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Abstract. In the context of testing of Object-Oriented (OO) software
systems, researchers have recently proposed search based approaches to
automatically generate whole test suites by considering simultaneously
all targets (e.g., branches) defined by the coverage criterion (multi-target
approach). The goal of whole suite approaches is to overcome the problem
of wasting search budget that iterative single-target approaches (which
iteratively generate test cases for each target) can encounter in case of
infeasible targets. However, whole suite approaches have not been im-
plemented and experimented in the context of procedural programs. In
this paper we present OCELOT (Optimal Coverage sEarch-based tooL
for sOftware Testing), a test data generation tool for C programs which
implements both a state-of-the-art whole suite approach and an itera-
tive single-target approach designed for a parsimonious use of the search
budget. We also present an empirical study conducted on 35 open-source
C programs to compare the two approaches implemented in OCELOT.
The results indicate that the iterative single-target approach provides
a higher efficiency while achieving the same or an even higher level of
coverage than the whole suite approach.

Keywords: Test Data Generation, Search-based Software Testing, Ge-
netic Algorithm

1 Introduction

Software testing is widely recognized as an essential part of any software develop-
ment process, representing however an extremely expensive activity. The overall
cost of testing has been estimated at being at least half of the entire develop-
ment cost, if not more [5]. Generating good test cases represents probably the
most expensive activity in the entire testing process. Hence, testing automation
is receiving more and more attention by researchers and practitioners in order
to increment the system reliability and to reduce testing costs. In this context,
search-based algorithms have been efficiently used for the test data generation
problem [24]. Specifically, such approaches can be used to generate test data with



respect to a coverage criterion (typically, branch coverage) aiming at covering
a specific target at a time (typically, a branch). In order to obtain a complete
test suite, the approach is executed multiple times, changing the target branch
each time, until all branches are covered or the total search budget, e.g., time
available, is consumed (iterative single-target test suite generation).

The iterative single-target test suite generation has two important limitations
[13]. First, in the program under test there might be branches that are more
difficult to cover as compared to others or there might be infeasible branches.
Thus, the search algorithm may be trapped on these branches wasting a sig-
nificant amount of the search budget [13]. Second, the order in which target
branches are selected can have a large impact on the final performance. In or-
der to mitigate these limitations, Fraser and Arcuri [13] proposed the whole test
suite approach, where instead of searching iteratively for tests that cover spe-
cific branches, the search algorithm searches for a set of tests (test suite) that
covers all the branches at the same time. Following the same underlying idea,
Panichella et al. [29] recently proposed MOSA (Many-Objective Sorting Algo-
rithm), an algorithm where the whole test suite approach is re-formulated as
a many-objective problem, where different branches are considered as different
objectives to be optimized. MOSA is able to achieve higher coverage or a faster
convergence at the same coverage level as compared to a single-objective whole
test suite approach [29]. Nevertheless, whole suite approaches have been intro-
duced in the context of Object-Oriented (OO) software systems and they have
never been experimented and compared to iterative single-target approaches in
the context of procedural programs.

In this paper we present a new test data generation tool for C programs
named OCELOT (Optimal Coverage sEarch-based tooL for sOftware Testing)
which implements both the many-objective whole suite approach MOSA [29]
and a new iterative single-target approach named LIPS (Linearly Independent
Path based Search) designed to efficiently use the search budget and re-use
profitable information from previous iterations. We also conduct an empirical
study on 35 open-source C programs to compare the two test data generation
approaches. The results achieved indicate that, if targets are selected aiming
at parsimoniously using the search budget, the iterative single target method
provides comparable or better performance than the more sophisticated whole
suite approach.

The remainder of this paper is organized as follows. Section II summarizes
background information and presents the related literature. Section III presents
OCELOT and the implemented test data generation approaches (MOSA and
LIPS). The results of the empirical study are reported in Section IV, while
Section V concludes the paper highlighting future research directions.

2 Background and Related Work

Search-based software testing approaches apply search-based algorithms—such
as Hill Climbing [16], Simulated Annealing [32], Alternating Variable Method



(AVM) [19] and Genetic Algorithm (GA) [36]—to automatically generate test
input data.

The design of any search algorithm for a specific optimization problem usually
requires the definition of the solution representation and the fitness function.
In the context of test data generation, a solution is represented by a set of
test inputs [24]. The fitness function, instead, highly depends on the coverage
criterion. Usually, branch coverage is used as code coverage criterion [18] [26] [30]
[32] [36] [35]. Specifically, the fitness function is mainly based on two measures:
approach level [30] and branch distance [18]. The approach level represents how
far is the execution path of a given test case from covering the target branch,
while the branch distance represents how far is the input data from changing the
boolean value of the condition of the decision node nearest to the target branch.
As the branch distance value could be arbitrarily greater than the approach
level, it is common to normalize the value of the branch distance [1] [35].

The first search-based approaches for test data generation defined in the
literature select the branches to covered incrementally (single-target strategy)
[35]. A simple single-target strategy for branch coverage could be summarized
as: (i) enumerate all targets (branches); (ii) perform a single-objective search, for
each target, until all targets are covered or the total search budget is consumed;
(iii) combine all generated test cases in a single test suite. Among the many
tools, prototype tools and framework that implemented the early single-target
approaches, we can mention TESTGEN [10], QUEST [6], ADTEST [14] and
GADGET [27]. A typical problem of tools that generate test cases for programs
developed in C is the handling of pointers. Lakhotia et al. [20] try to solve
this problem introducing a new approach, named AVM+. Such an approach is
implemented in AUSTIN, an open-source tool for automated test data generation
in C [20].

It is worth noting that the generated test cases need to be manually refined
to specify for each of them the oracle [4]. This means that the higher the num-
ber of generated test cases the higher the effort for the tester to generate the
oracle [4]. Such a problem has recalled the need to consider the oracle effort
when generating the test suite. A simple solution for solving this issue con-
sists of reducing the size of the generated test suite. With this goal, Oster and
Saglietti [28] introduced a technique, based on control and data flow graph cri-
teria, aimed at maximizing the code coverage and minimize the number of test
cases. Afterwards, Harman et al. [15] proposed three formulations of the test
case generation problem aiming at reducing oracle effort: (i) the Memory-Based
Test Data Reduction that maintains a set of not yet covered target branches
during the iterations; (ii) a greedy set cover algorithm; and (iii) a CDG-Based
algorithms. In the third formulation the fitness function is split in two parts:
the first consisting in the sum of approach level and branch distance and the
second considering the collateral coverage (serendipitously achieved). All such
formulations were implemented in IGUANA [25], a tool designed to simplify the
implementation of different single-target approaches and the comparison among



them. Finally, Ferrer et al. [11] dealt with coverage and oracle cost as equally
important targets.

Besides the aforementioned improvements, single target approaches still suf-
fer of two important limitations: (i) they can waste a significant amount of the
search budget trying to cover difficult or infeasible branches; (ii) the search for
each target is typically independent, and potentially useful information is not
shared between individual searches. In order to mitigate such problems, Fraser
and Arcuri [13] proposed the whole test suite generation approach, implemented
in the Evosuite tool [12]. This approach evolves testing goals simultaneously. A
candidate solution is represented as a test suite and the fitness function is repre-
sented by the sum of all branch distances and approach levels of all the branches
of the program under test. An experimentation conducted on 1,741 Java classes
showed that the whole suite approach achieves higher coverage than single tar-
get approaches (on average 83% vs 76%) and produces smaller test suites in
62% of the cases. Nonetheless the whole suite approach proposed by Fraser and
Arcuri [13] has a drawback: it tends to reward the whole coverage more than
the coverage of single branches [29]. Thus, in some cases, trivial branches are
preferred to branches that are harder to cover, affecting the overall coverage. To
mitigate such a problem, Panichella et al. [29] formulate the test data genera-
tion problem as a many-objective problem. In particular, the authors consider
the branch distance and the approach level of each branch as a specific fitness
function. In this reformulation, a test case is considered as a candidate solution,
while fitness is evaluated according to all branches at the same time. Since the
number of fitness functions could be very high, the authors introduced a novel
many-objective GA, named MOSA (Many-Objective Sorting Algorithm), and
integrated the new approach in Evosuite. The results of an empirical evalua-
tion conducted on 64 Java classes indicated that MOSA produces better results
compared to a single-objective whole test suite approach, i.e., MOSA achieved
a higher coverage or a faster convergence when the coverage level is comparable.

From the analysis of the state-of-the-art—to the best of our knowledge—
emerges that whole test suite approaches have been never experimented and
compared to single target approaches in the context of procedural programs.
Moreover, none of the tools presented in this section implements both single-
target and multiple-target approaches for procedural programs. In this paper we
bridge this gap by introducing a new tool for search-based test data generation
for C programs. The tool implements both a whole test suite approach and
a novel iterative single-target approach, allowing to compare, for the first time,
single-target and a multiple-target test data generation approaches in the context
of procedural programs.

3 OCELOT in a Nutshell

OCELOT (Optimal Coverage sEarch-based tooL for sOftware Testing) is a new
test suite generation for C programs implemented in Java. Unlike previous tools
for C programs, OCELOT automatically detects the input types of a given C



function without requiring any specification of parameters. In addition, the tool
handles the different data types of C, including structs and pointers and it is
able to produce test suites based on the Check unit testing framework3. As well
as all the tools presented in Section 2, OCELOT is not able to generate oracles:
such a task is delegated to a human expert.

OCELOT includes two different target selection strategies. The first strategy
is represented by MOSA [29], while the second one is represented by LIPS (Lin-
early Independent Path based Search), a technique inspired by the baseline
method proposed by McCabe et al. [34] and never used for search-based test
data generation before. We define LIPS in the context of this study and we do
not use a state-of-the-art technique in order to have a fair comparison between
the two families of approaches, i.e., iterative single-target and multi-target. In-
deed, LIPS was properly customized to share with whole suite approaches the
main goals of efficient use of the search budget and re-use of profitable informa-
tion from previous iterations.

The proposed iterative single-target approach is independent of the search
algorithm used to generate test data. However, we decided to use GA to have
a fair comparison with MOSA that is based on a many-objective GA, using
JMetal [9], a Java-based framework for multi-objective optimization with meta-
heuristics. We used the default GA configuration parameters, the SBX-Crossover
for the crossing-over, the Polynomial Mutation for the mutation, and the Binary
Tournament operator for selecting the fittest individuals. The GA configuration
and the genetic operators are exactly the same for both the whole suite and the
iterative single-target approach. It is worth noting that a solution in OCELOT is
represented as a list of input data [19], differently from Evosuite [12]. Therefore,
the version of MOSA implemented in OCELOT differs from the original one as
for this aspect. In the following we provide more details on the two approaches.

Many-Objective Sorting Algorithm (MOSA). MOSA reformulates the
test suite generation problem as a many-objective optimization problem [29]. A
solution is a test case and each objective represents how far a test case is from
covering a specific branch.

As first step MOSA randomly generates an initial set of test cases. Such test
cases represent the starting population of the genetic algorithm. In the generic
ith iteration (generation) of the genetic algorithm, offspring solutions are created
from the actual population and added to a set Rt, together with the population
Pi. All such solutions are sorted in Pareto-fronts F, each of which has a specific
rank. If a solution belongs to a Pareto-front with rank a, it means that such a
solution is better than all the solutions which belong to a Pareto-front with rank
b > a. MOSA generates the population for the next generation Pi+1 starting
from the Pareto-front with rank 0, and adding whole fronts until a Fd, so that
the addition of such a front would make the population larger than maximum
size, specified through the parameter PS. Anyhow, it may be necessary to add
some of the solutions belonging to Fd to the next population Pi+1 in order to

3 https://libcheck.github.io/check/



reach the maximum population size. MOSA promotes diversity adding to Pi

solutions from Fd that increase most the crowding distance.
In MOSA, the preference-sorting algorithm of Pareto-fronts has a key role.

The main problem is that multi-objective algorithms, like Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II)[8], Strength Pareto Evolutionary Algorithm
(SPEA2) [39] or Indicator Based Evolutionary Algorithm (IBEA) [38] do not
scale efficiently and effectively for problems with more than 15 objectives (even
less, in some cases) [22]. In the context of test suite generation, a program could
have hundreds of branches. For this reason, MOSA introduces a novel sorting al-
gorithm which is specific for the test case generation problem. F0 will contain the
solutions that minimize the objective function relative to branches not covered
yet. Such an expedient allows to include solutions that could lead to a strong
improvement of the coverage. The preference-sorting algorithm ranks other so-
lutions using the non-dominated sorting algorithm used by NSGA-II [8]. Such
an algorithm focuses only on objectives relative to uncovered branches, in order
to concentrate the search in interesting areas of the search space. Test cases that
cover specific branches are progressively saved in a separate data-structure: the
archive. In each iteration of the genetic algorithm, the archive will be updated,
so that if a solution is able to cover a previously uncovered branch, it is stored
into the archive. At the end of the algorithm, the archive will contain the final
test suite.

Whole test suite approaches, in general, and MOSA, in particular, have been
designed to work on OO languages. Since in such a context unit testing is gener-
ally focused on classes, a test case is represented as a sequence of statements in
order to handle many aspects such as instantiation, method calls and so on [31].
Conversely, in the context of procedural languages, a function can be considered
as the unit to test. Thus, we properly customize MOSA in order to represent a
test case as the input data (test data) of the function that has to be tested [24].

Linearly Independent Path based Search(LIPS). LIPS is an iterative
single-target approach we designed with the goal of mitigating the main limita-
tions of previous single-target approaches.

The target selection strategy exploited by LIPS takes inspiration from the
baseline method proposed by McCabe et al. [34], which computes a maximal
set of linearly independent paths of a program (a basis) [23]. This algorithm
incrementally computes a basis, by adding at each step a path traversing an
uncovered branch [34]. This means that executing all the paths in a basis im-
plies the coverage of all branches in the control flow graph [23]. Similarly, LIPS
incrementally builds a set of linearly independent paths by generating at each
iteration a test case (and then a path) able to cover a still uncovered branch.
It is worth noting that LISP does not need to generate test data for all linearly
independent paths of a basis in case the maximal coverage is achieved in advance
(due to collateral coverage).

The algorithm is partly inspired by Dynamic Symbolic Execution [21]. The
first step is to randomly generate the first test case (t0). For each decision node
in the execution path of t0 the uncovered branch of the decision is added to a



worklist. A random population which includes t0 is then generated to be used by
the second iteration of the algorithm. At the generic iteration i, the last branch
added to the worklist is removed and used as a target of the search algorithm. If
the search algorithm is able to find a test case that covers the target, a new test
case, ti is added to the test suite and all the uncovered branches of decision nodes
on the path covered by ti are added to the worklist. This procedure is iterated
until the worklist is empty (i.e. all the branches are covered) or until the search
budget, measured as number of fitness evaluations, is entirely consumed. Note
that at each iteration the last branch added to the worklist is used as target of
the search algorithm and the final population of the previous iteration is reused
(seeding), since it likely includes the test case covering the alternative branch.
In this way, we expect that the search algorithm will take less time to generate
a test case able to cover the target branch.

Sometimes, a test case can cover some branches that are already in the work-
list (collateral coverage). These branches are removed from the worklist and
marked as “covered”. On the other hand, it could happen that, while searching
for the test case which covers a certain branch, some of the partial solutions
generated by the search algorithm are able to cover other branches in the work-
list. Such test cases are added to the test suite and the covered branches are
removed from the worklist. It is worth noting that while this approach improves
the search efficiency (time) and effectiveness (coverage), it might result in adding
redundancy to the test suite. This issue will be discussed in Section 4.2.

Handling the budget in single-target approaches can be tricky. Allocating
the remaining budget to the search for covering a specific branch could be very
damaging, because budget will be wasted in case the target branch is infeasible
or difficult to cover. An alternative budget handling policy consists of distribut-
ing equally the budget over the branches. In other words, if the total budget
is SB (e.g., number of fitness function evaluation) and the program contains
n branches, a budget of SB

n will be available for such branch. LIPS uses a dy-
namic allocation of the search budget. Specifically, at the iteration i of the test
generation process, the budget for the specific target to cover is computed as
SBi

ni
, where SBi is the remaining budget and ni is the estimated number of re-

maining targets to be covered. We estimate the number of targets to be covered
by subtracting from the total number of branches of the Control-Flow Graph
the number of branches already covered and/or used as targets (but not covered
because they are infeasible or difficult to cover) at iteration i. Note that this is
a conservative estimation, due to the possible collateral coverage of non target
branches in the remaining iterations.

4 Empirical evaluation of OCELOT

The goal of the study is to compare the two test case generation methods imple-
mented in OCELOT, i.e., MOSA, a whole suite approach, and LIPS, an iterative
single target approach. The quality focus of the study is the effectiveness and
the efficiency of the two test case generation approaches, as well as the effort



# Function name Program name LOC Branches Cyclomatic complexity

1 check_ISBN bibclean 85 29 21
2 cliparc spice 136 64 32
3 clip_line spice 85 56 28
4 clip_to_circle spice 117 44 22
5 Csqrt 26 6 3
6 gimp_cmyk_to_rgb gimp 28 2 1
7 gimp_cmyk_to_rgb_int gimp 23 2 1
8 gimp_hsl_to_rgb gimp 31 4 2
9 gimp_hsl_to_rgb_int gimp 34 4 2
10 gimp_hsl_value gimp 22 10 5
11 gimp_hsl_value_int gimp 22 10 5
12 gimp_hsv_to_rgb gimp 69 11 8
13 gimp_rgb_to_cmyk gimp 36 8 4
14 gimp_rgb_to_hsl gimp 51 14 7
15 gimp_rgb_to_hsl_int gimp 58 14 7
16 gimp_rgb_to_hsv4 gimp 62 18 9
17 gimp_rgb_to_hsv_int gimp 59 16 8
18 gimp_rgb_to_hwb gimp 32 2 1
19 gimp_rgb_to_l_int gimp 19 2 1
20 gradient_calc_bilinear_factor gimp 30 6 3
21 gradient_calc_conical_asym_factor gimp 35 6 3
22 gradient_calc_conical_sym_factor gimp 43 8 4
23 gradient_calc_linear_factor gimp 30 8 4
24 gradient_calc_radial_factor gimp 29 6 3
25 gradient_calc_spiral_factor gimp 37 8 4
26 gradient_calc_square_factor gimp 29 6 3
27 triangle 21 14 7
28 gsl_poly_complex_solve_cubic GLS 113 20 11
29 gsl_poly_complex_solve_quadratic GLS 77 12 7
30 gsl_poly_eval_derivs GLS 41 10 6
31 gsl_poly_solve_cubic GLS 73 14 8
32 gsl_poly_solve_quadratic GLS 60 12 7
33 sglib_int_array_binary_search SGLIB 32 8 5
34 sglib_int_array_heap_sort SGLIB 80 28 15
35 sglib_int_array_quick_sort SGLIB 102 30 16

Table 1: C functions used in the study

required for the definition of the oracle of the generated test cases. The context
of the study consists of 35 open-source C functions, with a total of 605 branches,
taken from different programs, in particular from gimp, an open source GNU
image manipulation software, GSL, the GNU Scientific Library, SGLIB, a generic
library for C, and spice, an analogue circuit simulator. We selected these func-
tions since they have been used in previous work on test case generation for
C language [20]. It is worth noting that, since the current implementation of
OCELOT does not properly support the generation of test cases for functions
having complex data types as input (e.g. pointers to struct), we selected only a
subset of functions from the chosen programs. The main characteristics of the
object programs are summarized in Table 1.

4.1 Research Questions and Analysis Method

The study is steered by the following research questions:

– RQ1 (Effectiveness): Which is the coverage of MOSA as compared to LIPS
when generating test cases for procedural code?

– RQ2 (Efficiency): Which is the execution time of MOSA as compared to
LIPS when generating test cases for procedural code?



– RQ3 (Oracle Cost): Which is the size of the test suite generated by MOSA
as compared to the size of the test suite generated by LIPS?

To address the three research questions we run the MOSA and LIPS 30
times for each object function and compute the average performance of the two
approaches. Specifically:

– for RQ1 we compare the average percentage of branches covered by each
approach for each function.

– for RQ2 we compare the average running time required by each approach
for each function. The execution time was measured using a machine with
Intel Core i7 processor running at 3.1 GHz with 4GB RAM.

– for RQ3 we measure the average size of the test suite generated by each
approach for each function.

We also statistically analyze the achieved results. Statistical significance is mea-
sured with the Wilcoxon’s test [7], with a p-value threshold of 0.05. Significant
p-values indicate that the corresponding null hypothesis can be rejected in fa-
vor of the alternative one, i.e., one of the approaches reaches a higher coverage
(RQ1), it is faster in term of running time (RQ2), or it generates smaller test
suites (RQ3). Other than testing the null hypothesis, we use the Vargha-Delaney
(Â12) statistical test [33] to measure the magnitude of difference between the
results achieved by the two experimented approaches. Vargha-Delaney (Â12)
statistic also classifies the magnitude of the obtained effect size value into four
different levels (negligible, small, medium, and large). It’s important to note that
in our experiments we setup the population size to 100 individuals and the search
budget is 200.000 evaluations. Moreover the crossover probability is 0.90.

4.2 Analysis of the Results and Discussion

In this section we discuss the achieved results aiming at answering the research
questions previously formulated. Table 2 shows the achieved results along with
p-values obtained from Wilcoxon test [7]. The table also shows the effect size
metric from Vargha-Delaney (Â12) statistic [33], indicating also the magnitude
of the difference.

RQ1 (Effectiveness). The first part of Table 2 summarizes the results in
term of coverage achieved by MOSA and LIPS. The overall average coverage was
84.73% for MOSA and and 86.29% for LIPS. Also, LIPS is significantly better
in 10 out of 35 cases with an effect size large or medium in 8 cases. Instead,
MOSA achieves a significantly higher coverage just in two cases: once with a
small effect size and once with a large effect size. Moreover, we can notice
that when LIPS outperforms MOSA, the coverage increases between 0.28% and
15.83%; on the other hand, in the only case where MOSA performs better with
a large effect size, the difference in terms of coverage is of 8.6% with respect to
LIPS.

RQ2 (Efficiency). The second part of Table 2 shows the results achieved in
terms of efficiency, measured as time spent for the generation of the test suites.



Coverage Execution time Test suite size

# LIPS MOSA p-value Â12 Magnitude LIPS MOSA p-value Â12 Magnitude LIPS MOSA p-value Â12 Magnitude

1 86.21% 86.21% 1.000 0.50 negligible 36.30 59.10 <0.001 1.00 large 9.37 7.43 <0.001 0.10 large
2 94.95% 95.00% 0.276 0.47 negligible 7.80 26.10 <0.001 1.00 large 18.67 15.67 <0.001 0.05 large
3 87.50% 85.00% <0.001 1.00 large 15.00 37.00 <0.001 1.00 large 10.90 9.40 0.022 0.24 large
4 86.59% 87.05% 0.659 0.55 negligible 8.80 31.40 <0.001 1.00 large 16.10 14.40 0.125 0.35 small
5 83.33% 83.33% 1.000 0.50 negligible 6.87 9.13 <0.001 1.00 large 3.47 2.43 <0.001 0.12 large
6 100.00% 100.00% 1.000 0.50 negligible 0.00 7.53 <0.001 1.00 large 4.00 2.00 <0.001 0.00 large
7 88.33% 80.00% 0.086 0.58 small 1.53 7.53 <0.001 0.97 large 2.77 1.60 <0.001 0.07 large
8 91.67% 92.50% 0.395 0.48 negligible 2.43 8.70 <0.001 0.97 large 4.33 2.70 <0.001 0.12 large
9 93.33% 86.67% 0.019 0.63 small 1.93 9.50 <0.001 1.00 large 4.47 2.47 <0.001 0.06 large
10 100.00% 100.00% 1.000 0.50 negligible 0.00 10.23 <0.001 1.00 large 6.67 4.60 <0.001 0.00 large
11 100.00% 100.00% 1.000 0.50 negligible 0.00 10.60 <0.001 1.00 large 6.37 4.73 <0.001 0.05 large
12 87.27% 90.00% 0.004 0.35 small 4.93 12.47 <0.001 0.97 large 10.20 7.90 <0.001 0.00 large
13 100.00% 100.00% 1.000 0.50 negligible 0.00 10.67 <0.001 1.00 large 4.90 3.93 <0.001 0.14 large
14 85.00% 78.57% <0.001 0.95 large 4.97 11.83 <0.001 1.00 large 5.97 3.60 <0.001 0.00 large
15 92.86% 89.05% <0.001 0.77 large 7.07 12.03 <0.001 1.00 large 5.87 4.43 <0.001 0.09 large
16 83.33% 83.33% 1.000 0.50 negligible 7.53 15.23 <0.001 1.00 large 5.30 4.50 <0.001 0.17 large
17 86.67% 83.12% <0.001 0.78 large 7.87 15.83 <0.001 1.00 large 6.37 5.20 <0.001 0.09 large
18 51.67% 50.00% 0.167 0.52 negligible 7.97 9.10 <0.001 0.98 large 2.07 1.00 <0.001 0.00 large
19 100.00% 100.00% 1.000 0.50 negligible 0.00 8.03 <0.001 1.00 large 3.00 2.00 <0.001 0.00 large
20 84.44% 83.33% 0.157 0.53 negligible 2.53 8.53 <0.001 1.00 large 5.17 3.00 <0.001 0.02 large
21 83.33% 83.33% 1.000 0.50 negligible 4.07 11.07 <0.001 1.00 large 5.00 3.00 <0.001 0.00 large
22 86.67% 87.50% 0.080 0.47 negligible 4.30 11.67 <0.001 1.00 large 5.87 4.00 <0.001 0.03 large
23 87.92% 87.50% 0.285 0.52 negligible 2.43 9.03 <0.001 1.00 large 6.13 4.00 <0.001 0.02 large
24 87.78% 83.33% 0.006 0.63 small 2.60 8.23 <0.001 1.00 large 5.53 3.00 <0.001 0.03 large
25 87.08% 87.50% 0.167 0.48 negligible 3.97 11.07 <0.001 1.00 large 5.33 3.50 <0.001 0.03 large
26 88.89% 83.33% <0.001 0.67 medium 2.47 8.07 <0.001 1.00 large 5.70 3.00 <0.001 0.00 large
27 88.89% 88.89% 1.000 0.50 negligible 6.07 12.10 <0.001 1.00 large 12.13 7.80 <0.001 0.00 large
28 58.33% 52.73% <0.001 0.79 large 4.10 16.33 <0.001 1.00 large 5.87 3.97 <0.001 0.03 large
29 58.33% 58.33% 1.000 0.50 negligible 3.50 10.50 <0.001 1.00 large 4.00 3.00 <0.001 0.00 large
30 100.00% 100.00% 1.000 0.50 negligible 0.00 24.27 <0.001 1.00 large 2.40 1.63 <0.001 0.19 large
31 55.00% 63.50% <0.001 0.17 large 3.63 14.60 <0.001 1.00 large 5.00 5.03 0.400 0.52 negligible
32 58.33% 58.61% 0.167 0.48 negligible 3.23 10.40 <0.001 1.00 large 4.00 3.03 <0.001 0.02 large
33 100.00% 84.17% <0.001 0.82 large 0.07 11.57 <0.001 1.00 large 4.37 1.43 <0.001 0.00 large
34 100.00% 100.00% 1.000 0.50 negligible 0.00 18.63 <0.001 1.00 large 3.17 2.20 <0.001 0.16 large
35 96.67% 93.89% <0.001 0.83 large 12.17 20.10 <0.001 1.00 large 4.63 3.17 <0.001 0.18 large

Table 2: Comparison of results achieved achieved by LIPS and MOSA.

Results are clearly in favor of LIPS. The overall average execution time for MOSA
is 14.80 seconds, while LIPS spent, on average, 5.03 seconds for each function,
with an improvement with respect to MOSA of about 66%. The improvement
in terms of execution time is also supported by statistical tests. Specifically,
the execution time of LIPS is statistically lower than the execution time of
MOSA in all the cases, with a large effect size. It is worth noting that LIPS is
faster even when it is able to achieve a significantly higher coverage. The most
evident difference in terms of execution time can be observed in the case of
function gsl_poly_eval_derivs (#30): MOSA spent about 24.27 seconds for
the overall test suite generation process, while LIPS always needed less than
a second. On this function the two approaches achieve exactly the same level
of coverage (100%). In order to have more insights on why the iterative single
target approach is faster than the whole test suite approach, we launched LIPS
and MOSA on the function which requires the highest execution time for both
the approaches (i.e., cliparc) and used a Java profiler (VisualVM) to check at
which step MOSA requires more time. We observed that the bottleneck in MOSA
is represented by the algorithm used to compare the solutions, i.e., ranking the
solutions in different Pareto-fronts. LIPS does not need such an algorithm, thus
saving execution time.

RQ3 (Oracle cost). The third part of Table 2 shows the average size of
the test suites generated by each approach for all the functions under test. The
results show that, on average, MOSA generates about 4.4 test cases, compared to



Coverage Execution time Test suite size

# LIPS* MOSA p-value Â12 Magnitude LIPS* MOSA p-value Â12 Magnitude LIPS* MOSA p-value Â12 Magnitude

1 85.29% 85.75% 0.285 0.48 negligible 33.37 55.63 <0.001 1.00 large 5.10 7.30 <0.001 0.94 large
2 94.79% 95.05% 0.063 0.41 small 4.57 26.27 <0.001 1.00 large 13.40 15.73 <0.001 0.94 large
3 85.18% 85.54% 0.228 0.59 small 14.20 36.80 <0.001 1.00 large 9.40 8.50 0.100 0.67 medium
4 85.91% 85.91% 0.562 0.52 negligible 6.30 32.50 <0.001 1.00 large 12.40 12.70 0.408 0.54 negligible
5 83.33% 83.33% 1.000 0.50 negligible 5.20 8.07 <0.001 1.00 large 2.47 2.53 0.307 0.53 negligible
6 100.00% 100.00% 1.000 0.50 negligible 0.00 6.03 <0.001 1.00 large 2.00 2.00 1.000 0.50 negligible
7 86.67% 85.00% 0.391 0.52 negligible 1.50 6.53 <0.001 0.95 large 1.73 1.70 0.392 0.48 negligible
8 91.67% 94.17% 0.200 0.45 negligible 1.67 6.77 <0.001 1.00 large 2.67 2.77 0.200 0.55 negligible
9 90.00% 91.67% 0.301 0.47 negligible 2.33 7.13 <0.001 1.00 large 2.60 2.67 0.301 0.53 negligible
10 100.00% 100.00% 1.000 0.50 negligible 0.00 8.30 <0.001 1.00 large 4.43 4.70 0.020 0.63 small
11 100.00% 100.00% 1.000 0.50 negligible 0.00 8.43 <0.001 1.00 large 4.60 4.57 0.446 0.49 negligible
12 88.18% 89.39% 0.115 0.43 negligible 3.43 10.63 <0.001 1.00 large 7.70 7.83 0.115 0.57 negligible
13 100.00% 100.00% 1.000 0.50 negligible 0.00 8.20 <0.001 1.00 large 3.77 3.73 0.414 0.48 negligible
14 83.81% 78.57% <0.001 0.87 large 4.73 11.07 <0.001 1.00 large 4.07 3.67 0.012 0.35 small
15 89.29% 89.76% 0.307 0.47 negligible 0.90 12.00 <0.001 1.00 large 4.57 4.63 0.247 0.55 negligible
16 83.33% 83.15% 0.167 0.52 negligible 6.20 14.07 <0.001 1.00 large 4.20 4.57 0.002 0.68 medium
17 84.79% 83.96% 0.155 0.57 negligible 3.20 12.10 <0.001 1.00 large 5.10 5.23 0.252 0.54 negligible
18 53.33% 50.00% 0.080 0.53 negligible 5.23 7.03 <0.001 1.00 large 1.07 1.00 0.080 0.47 negligible
19 100.00% 100.00% 1.000 0.50 negligible 0.00 5.53 <0.001 1.00 large 2.00 2.00 1.000 0.50 negligible
20 82.22% 82.78% 0.322 0.48 negligible 2.50 8.10 <0.001 1.00 large 2.93 2.97 0.322 0.52 negligible
21 81.67% 83.33% 0.041 0.45 negligible 3.37 8.13 <0.001 1.00 large 2.90 3.00 0.041 0.55 negligible
22 87.50% 87.50% 1.000 0.50 negligible 3.00 9.07 <0.001 1.00 large 4.00 4.00 1.000 0.50 negligible
23 88.33% 87.92% 0.285 0.52 negligible 1.87 8.93 <0.001 1.00 large 4.07 4.03 0.285 0.48 negligible
24 90.56% 83.33% <0.001 0.72 medium 1.53 7.70 <0.001 1.00 large 3.43 3.00 <0.001 0.28 medium
25 87.50% 87.50% 1.000 0.50 negligible 3.03 9.10 <0.001 1.00 large 3.33 3.53 0.062 0.60 small
26 86.11% 83.33% 0.010 0.58 small 2.03 7.77 <0.001 1.00 large 3.17 3.00 0.011 0.42 small
27 87.59% 88.89% 0.003 0.38 small 5.20 12.03 <0.001 1.00 large 7.43 7.77 0.013 0.64 small
28 45.45% 53.48% <0.001 0.17 large 3.03 15.80 <0.001 1.00 large 3.00 4.10 <0.001 0.83 large
29 58.33% 58.33% 0.167 0.50 negligible 3.07 10.03 <0.001 1.00 large 3.00 3.00 1.000 0.50 negligible
30 100.00% 100.00% 1.000 0.50 negligible 0.00 25.17 <0.001 1.00 large 1.63 1.63 0.578 0.51 negligible
31 55.00% 58.50% 0.001 0.37 small 3.20 14.20 <0.001 1.00 large 4.00 4.43 0.001 0.63 small
32 58.33% 58.61% 0.167 0.48 negligible 3.10 10.13 <0.001 1.00 large 3.00 3.03 0.167 0.52 negligible
33 100.00% 82.50% <0.001 0.85 large 0.43 11.23 <0.001 1.00 large 2.50 1.30 <0.001 0.09 large
34 100.00% 100.00% 1.000 0.50 negligible 0.00 18.77 <0.001 1.00 large 2.77 2.13 0.009 0.33 medium
35 94.67% 94.11% 0.173 0.56 negligible 11.63 20.77 <0.001 1.00 large 4.27 3.30 0.001 0.27 medium

Table 3: Comparison of the results achieved by LIPS* and MOSA.

about 6.1 test cases of LIPS. This means that MOSA generates test suites that
are 28.0% smaller, on average. The differences between the size of the generated
test suites is significant with a large effect size in almost all the cases. It is
worth noting that, in one of the 3 cases where the effect size is not large, MOSA
achieves a significantly higher level of coverage as compared to LIPS.

The results achieved are quite expected since LIPS has been defined to effi-
ciently use the search budget and maximize the coverage through the inclusion in
the test suite of test cases covering branches not selected as target. Thus, it does
not take into account the size of the test suite explicitly, as done, for instance, by
the approach proposed by Harman et al. [15], but rather the underlying strategy
often results in the inclusion of redundant test cases.

We also implemented a revised version of LIPS (indicated as LIPS*) where we
avoid the inclusion in the test suite of test cases covering branches not selected

Test suite sizes after greedy minimization

# LIPS MOSA p-value Â12 Magnitude # LIPS MOSA p-value Â12 Magnitude # LIPS MOSA p-value Â12 Magnitude

1 4.00 4.03 0.434 0.51 negligible 13 3.13 3.00 0.120 0.44 negligible 25 3.07 3.17 0.158 0.55 negligible
2 11.00 10.87 0.273 0.46 negligible 14 4.00 3.13 <0.001 0.11 large 26 3.33 3.00 <0.001 0.33 medium
3 5.70 5.40 0.289 0.42 small 15 4.10 4.17 0.230 0.53 negligible 27 6.00 6.03 0.167 0.52 negligible
4 7.30 8.00 0.220 0.60 small 16 4.00 4.00 1.000 0.50 negligible 28 4.87 3.97 <0.001 0.21 large
5 2.13 2.13 0.505 0.50 negligible 17 4.00 4.00 1.000 0.50 negligible 29 3.00 3.00 1.000 0.50 negligible
6 2.00 2.00 1.000 0.50 negligible 18 1.03 1.00 0.167 0.48 negligible 30 1.17 1.27 0.178 0.55 negligible
7 1.77 1.60 0.086 0.42 small 19 2.00 2.00 1.000 0.50 negligible 31 4.00 5.03 <0.001 0.83 large
8 2.67 2.70 0.395 0.52 negligible 20 3.07 3.00 0.157 0.47 negligible 32 3.00 3.03 0.167 0.52 negligible
9 2.73 2.47 0.019 0.37 small 21 3.00 3.00 1.000 0.50 negligible 33 2.00 1.37 <0.001 0.18 large
10 4.23 4.20 0.382 0.48 negligible 22 3.93 4.00 0.080 0.53 negligible 34 1.90 1.87 0.457 0.49 negligible
11 4.20 4.20 0.504 0.50 negligible 23 4.03 4.00 0.285 0.48 negligible 35 1.90 1.87 0.457 0.49 negligible
12 6.60 6.90 0.004 0.65 small 24 3.27 3.00 0.006 0.37 small

Table 4: Test suite sizes after greedy minimization for LIPS and MOSA.



as target. Table 3 shows the comparison between LIPS* and MOSA. The two
approaches attain levels of coverage and test suite size very similar. They both
achieve a significantly higher coverage in only 3 cases. About test suite size,
MOSA generates smaller test suites in 6 cases, while LIPS* in 7 cases. It is worth
noting that a difference in terms of coverage always implies a difference in terms
of test suite size. Excluding such cases, only LIPS* achieves a large difference in
terms of test suite size. Nevertheless, LIPS* still maintains a significantly higher
efficiency in all the cases. This proves that LIPS privileges coverage as for test
suite size. However, in our opinion this is not a limitation of the approach, as
the size of the generated test suites can be easily reduced by using well-known
minimization techniques [37].

To verify the effect of test suite minimization, Table 4 shows the comparison
between the size of the test suites generated by MOSA and LIPS after minimizing
the test suites using a greedy algorithm [37] [17]. It is worth noting that in order
to have a fair comparison, the test suite minimization was applied also on the
test suites generated by MOSA (even if minimization is implicit in MOSA).
As we can see, the differences in terms of test suite size are radically ironed
out after the minimization. As expected, the only significant differences concern
some of the functions for which the achieved coverage is significantly different.
In addition, the average time spent for the minimization task is always less than
a second (nearly 0 seconds), hence its effect on the execution time is negligible.

4.3 Threats to Validity

This section discusses the threats to the validity of our empirical evaluation.
Construct Validity. We used three metrics widely adopted in literature:

branch coverage, execution time and number of generated test cases [24]. In the
context of our study, these metrics provides a good estimation of effectiveness
(code coverage), efficiency (execution time) and oracle effort (test suite size).
Another threat consists of the methodology used to compare LIPS with MOSA.
Considering that an implementation of MOSA for the C language is not publicly
available, we had to implement the approach in our tool. However, we strictly fol-
lowed the definition of the algorithm provided by Panichella et al. [29]. Since also
LIPS has been implemented in the same tool, the comparison of the two approach
is much fairer, since it is not influenced by the underlying technology. Another
threat to the construct validity consists of the meta-heuristic used in the study.
Considering that MOSA is strictly based on GAs, due to its multi-objectives
nature, we decided to limit our study to this kind of algorithm. However, in the
future we plan to integrate other search-based algorithms in LIPS.

Internal Validity. We ran test data generation techniques 30 times for each
subject program and reported average results together with statistical evidence
to address the random nature of the GAs themselves [2]. The tuning of the GA’s
parameters is another factor that could affect the internal validity of this work.
However, in the context of test data generation it is not easy to find good settings
that significantly outperform the default values suggested in the literature [3].
For this reason, we used the default values widely used in literature.



External Validity. We considered 35 open-source functions taken from dif-
ferent programs. We selected these functions since they have been used in pre-
vious work on test case generation [20] for C language. Functions were selected
to have small and quite large samples, as well as samples with low and high
cyclomatic complexity. Also, triangle and bibclean are used in search-based
software testing [16, 24], while Csqrt represents a valuable testing scenario since
it contains a condition really hard to cover, namely a comparison between a dou-
ble and a fixed number (0.0). Also, besides numerical input values, the considered
functions take as input structures (gimp_rgb_to_hsl) and strings (check_ISBN)
as well. However, in order to corroborate our findings, we plan to replicate the
study on a wider range of programs. Our results are different than those achieved
in the context of OO programming [13]. We cannot state if these differences are
related to LIPS or concern the different characteristics between procedural and
OO code. For this reason, in the future, we plan to implement LIPS in the
context of Evosuite [12] and compare it with other whole suite approaches.

Conclusion Validity. We used appropriate statistical tests coupled with
enough repetitions of the experiments. In particular, we used the Wilcoxon test
[7] to test the significance of the differences and the Vargha-Delaney statistic
[33] to estimate the magnitude and the effect size of the observed differences.

5 Conclusion and Future Work

We presented OCELOT, a tool for test case generation for C programs. OCELOT
implements the most efficient and effective state-of-the-art whole suite approach
MOSA [29], adapted for procedural test case representation, and a new iterative
single-target approach named LIPS (Linearly Independent Path based Search),
inspired by the baseline method for the construction of a maximal set of linearly
independent paths [34] and designed to avoid search budget wasting. An em-
pirical study conducted on 35 C functions was carried out to compare the two
test data generations approaches implemented in OCELOT. The results indicate
that the iterative approach provides a better or comparable level of coverage with
respect to whole suite approach with a much lower execution time. The main
weakness of LIPS with respect to MOSA is represented by the size of the gen-
erated test suites. However, after applying a test suite minimization approach
based on greedy algorithm [17] the difference in terms of test suite size between
the two techniques becomes negligible, without affecting execution time.

As future work, we plan to replicate the study on a larger dataset of programs
and also in the context of OO programs. We also plan to implement in OCELOT
different search algorithms and compare them with genetic algorithms.
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