Fixing of Security Vulnerabilities in
Open Source Projects: A Case Study of
Apache HTTP Server and Apache Tomcat

Valentina Piantadosi
University of Molise, Italy
v.piantadosi @studenti.unimol.it

Abstract—Software vulnerabilities are particularly dangerous
bugs that may allow an attacker to violate the confidentiality,
integrity or availability constraints of a software system. Fixing
vulnerabilities soon is of primary importance; besides, it is crucial
to release complete patches that do not leave any corner case not
covered. In this paper we study the process of vulnerability fixing
in Open Source Software. We focus on three dimensions: personal,
i.e., who fixes software vulnerabilities; temporal, i.e., how long
does it take to release a patch; procedural, i.e., what is the process
followed to fix the vulnerability. In the context of our study we
analyzed 337 CVE Entries regarding Apache HTTP Server and
Apache Tomcat and we manually linked them to the patches
written to fix such vulnerabilities and their related commits.
The results show that developers who fix software vulnerabilities
are much more experienced than the average. Furthermore, we
observed that the vulnerabilities are fixed through more than a
commit and, surprisingly, that in about 3% of the cases such
vulnerabilities show up again in future releases (i.e., they are
not actually fixed). In the light of such results, we derived some
lessons learned that represent a starting point for future research
directions aiming at better supporting developers during the
documentation and fixing of vulnerabilities.

Index Terms—Software Vulnerabilities, Empirical Studies,
Mining Software Repositories, Open-Source Software

I. INTRODUCTION

Software vulnerabilities are a big threat for the security of
software systems. Vulnerabilities are bugs, i.e., errors in the
source code, that can be exploited to (i) take control of the
system (i.e., integrity), (ii) acquire private data (i.e., confiden-
tiality), and (iii) take the system down (i.e., availability).

Software vulnerabilities are not only dangerous for the
users. They are critical also for the companies that maintain
the software affected and the ones that use such software. As
reported in a previous study, software vulnerabilities have a
significant impact on the stock price of the companies when
they are disclosed and exploited [20].

During software maintenance, vulnerabilities should be ad-
dressed with higher priority, since they can harm the users
in a more severe way compared to normal bugs. Besides,
because of the hazard entailed by using vulnerable software
in production, such bugs should be disclosed only when
they are properly patched and, ideally, deployed. For this
reason, organizations usually encourage the users who find

Simone Scalabrino
University of Molise, Italy
simone.scalabrino @unimol.it

Rocco Oliveto
University of Molise, Italy
rocco.oliveto@unimol.it

vulnerabilities communicating them privately, some of them
even rewarding people who do that!.

Then, an internal team of security experts works on the
patch to minimize the probability that an attacker exploits
them on production systems, and, as soon as a new version is
released, the vulnerability is publicly disclosed and users can
deploy the patched version.

This can happen in several ways. Some projects, such the
ones in the Apache ecosystem, provide newsletters about
security updates available. Moreover, the NIST (National
Institute for Standards and Technology) and MITRE maintain
CVE (Common Vulnerabilities and Exposure) databases, i.e.,
dictionaries that provide information about publicly disclosed
vulnerabilities and exposures. Each vulnerability has a CVE
Entry, and each entry has a unique ID, a description and
an estimation of the severity of the vulnerability. The main
goal of CVE is to provide a way to share information about
vulnerabilities among different tools.

Despite the presence of such sources of information, re-
constructing what happens from the report to the release of
the patch a-posteriori from the CVE Entries can be tricky.
CVE Entries, indeed, often do not report information about
vulnerable code and patches produced.

Recently, Li and Paxson [10] used a fully-automated ap-
proach to conduct a large-scale analysis on vulnerability patch-
ing. Such a study provides useful insights about vulnerability
patching from a security perspective. Besides, Nappa et al.
[17] studied how quickly vulnerability patches are deployed.
However, to the best of our knowledge, no previous study
analyzed the characteristics of the engineering process behind
vulnerability fixing. Indeed, it is still not clear who are the
developers who address vulnerabilities, what is the timing of
vulnerability fixing, and how the patches are produced. Such
an analysis would be useful to understand what is the best way
to address vulnerabilities (e.g., assigning them to experienced
developers or to the developers who worked mostly on the
vulnerable feature).

In this paper we bridge this gap. We conduct an in-depth
empirical study to investigate the process of vulnerability
fixing in open-source projects.

I https://www.google.com/about/appsecurity/reward-program/

We focus on three aspects:

1) Who are the developers who fix the vulnerabilities?

2) When are vulnerabilities fixed?

3) How are vulnerabilities fixed?

To answer the above questions, we considered all the
vulnerabilities reported in the CVE database for two open-
source projects, i.e., Apache HTTP and Apache Tomcat. We
manually linked each vulnerability to the fixing commits to
have a reliable source for our analysis. Then, we used such a
dataset to answer our research questions.

Our results show that the developers who fix software
vulnerabilities are generally much more experienced than the
average team members; besides, we found that such developers
rarely modify files they own. Software vulnerabilities are
usually fixed before the related CVE Entries are published;
however, we found cases in which the fix was completed even
years after the CVE Entry was published. Finally, we show that
most of the vulnerabilities are fixed with very small patches.

We used the results achieved to derive some lessons learned
about vulnerability fixing. For example, our results suggest
that using a vulnerability patching process more similar to
the one used in closed-source software (with a small team
handling such cases) seems to provide some benefits in terms
of security.

The derived lessons learned call for new approaches sup-
porting developers during vulnerability fixing. For example,
we foresee a valuable support from approaches for vulnera-
bility triaging, to assign vulnerabilities to the developer who
most likely will be able to fix it effectively and efficiently; also,
approaches for detecting incomplete patches could be critical
in some contexts to minimize the potential risks of exploit.

The reminder of our paper is organized as follows. In
Section II we present the empirical study design of our
investigation; Section III contains the detailed results of our
analysis; in Section IV we discuss our findings and we report
some lessons learned; in Section V we present the threats
that could affect the validity of our study, and we conclude
our work in Section VII, presenting possible new research
directions based on the results achieved in our study.

II. EMPIRICAL STUDY DESIGN

The goal of the study is to analyze the process of vulnerabil-
ity fixing in open source projects looking at three dimensions:
(i) personal (who fixed the vulnerabilities?); (ii) temporal
(when are vulnerabilities fixed?); (iii) procedural (how are the
vulnerabilities fixed?).

Thus, our study is steered by the following research ques-
tions:

e RQy: Who fixes vulnerabilities? This research question
aims at understanding who are the developers who fix
vulnerabilities in a team. We want to check if the devel-
opers who fix vulnerabilities are more experienced than
the average (i) on the whole project and (ii) on the files
they modify.

e RQo: When are vulnerabilities fixed? This research ques-
tion aims at discovering how much time is needed to fix

TABLE I: CVE Entries in the Apache ecosystem. In the
context of our study we selected the two projects with the
highest number of reported software vulnerabilities (reported
in bold).

Project CVE Entries
Apache HTTP Server 206
Apache Tomcat 131
Apache Struts 71
Apache Subversion 39
Apache ActiveMQ 25

vulnerabilities and how frequently vulnerabilities show
up again after they are (apparently) fixed in a software
release.

e RQgs: How are vulnerabilities fixed? With this research
question we want to analyze the process of vulnerability
fixing, looking at the number of commits, at the files
involved, and checking if the change involves one or more
subsystems (i.e., if they are local or global changes).

A. Context Selection

The context of this study consists of (i) two open source
projects belonging to the Apache ecosystem, i.e., HTTP Server
and Tomcat; (ii) their whole history of publicly known vul-
nerabilities; and (iii) their change history.

We selected HTTP Server and Tomcat from the Apache
ecosystem because they are the two projects with the highest
number of reported software vulnerabilities. Table I reports the
ranking of five software projects from the Apache ecosystem
with the largest number of CVE Entries at the time of the
experiment.

We relied on CVE Details?, a mirror of the National
Vulnerability Database (NVD), as the data source for software
vulnerabilities. We decided to use such a database instead
of the NVD or the MITRE CVE database because it pro-
vides much useful information about the vulnerabilities. We
used such information to track the patching commits. Such
a database lists CVE Entries. Each CVE Entry refers to
a specific software vulnerability of the project, and it has
a unique identifier. The identifiers is assigned by the CVE
Numbering Authorities (CNAS).

Each CVE Entry in the CVE Details database contains both
structured and unstructured information about the releases of
the systems that were affected and the severity of the vulnera-
bility. We collected such information and we enriched it with
details about the commits done to patch the vulnerabilities in
a fully structured way.

A part of the unstructured information that we had to
structure is the list of commits that fixed a vulnerability.
Indeed, in the CVE Details database there is not always a
direct connection between the CVE Entry and the commit(s)
that fixed it. Moreover, some of the patches to the oldest
vulnerabilities were posted on the mailing lists and they were

2 https://cvedetails.com

1
1 experience:Number 1
location:{Repo, ML} |

Commit

CVE
ID:String
CVE-ID:String date:Date
CWE-ID:String message:String
type:String

author

description:String
created:Date
published:Date
updated:Date
fix-release:Date
score:Number
gained-access:{None, User, Admin} 1 L
access:{Remote, Local}
confidentiality:{None, Partial, Complete}
integrity:{None, Partial, Complete}
availability:{None, Partial, Complete}

1

Developer

name:String
email:String

fixed-version:String
update-released:boolean
exploits:Number

File

fix-granularity:{Local, Global}
path:String

1 owner

Fig. 1: Conceptual diagram of the dataset we created. In red, the data that we computed to answer our research questions.

committed by other internal members of the project. For this
reason, we could not devise an approach to automatically
extract such information and we needed to manually analyze
each CVE Entry to find the fixing commits and the responsible
authors. We explain in the following subsection the process we
followed to do this.

In the end, we created a dataset of CVE Entries with (i)
details on the vulnerability, (ii) details on patches (e.g., lines
of code), (iii) details on the commits involved (e.g., commit
time) and (iv) details on the author (e.g., name and username).
We use this dataset to answer all our research questions. We
report in Figure 1 the conceptual diagram of the dataset we
acquired. We report in red the data we computed to answer
our research questions, detailed in Section II-C

B. Finding the Fixing Commits

For all the CVE Entries marked as fixed, we had to manually
look for the fixing commits in the project repository. To this
aim, we used the unstructured information provided in the
CVE Entries. Such information contain a list of links to useful
resources, such as discussions in the mailing lists.

As previously stated, finding the fixing commits and the
authors is not a trivial process. We used a systematic approach
to retrieve such information in the most reliable way. As
a first step, we tried to find direct and indirect links from
the CVE Entry to any GitHub commit and we considered
such commits as potentially fixing. However, the CVE Entries
describing vulnerabilities that involved old releases of Apache
HTTP (e.g., before the GitHub repository was created at all)
did not contain such links. Also, we found that, even when
such a piece of information is available, it is sometimes
not complete, i.e., there are other commits related to the
vulnerability patching not reported in the CVE Entry.

Therefore, we looked for the fixing commits also in the
revision history of the project. First, we considered as poten-
tially fixing commits all the commits containing the ID of the

CVE Entry in the commit messages in the whole history of
the project. Then, we used keywords from the CVE Entry
description to find other potentially fixing commits. In this
case, we focused on the commits from the date in which the
earliest vulnerable version of the software was published to
date in which the latest patched version was released. Both
such dates can be deduced from the data provided by the CVE
Entries. Finally, we manually analyzed the set containing all
the potentially fixing commits we gathered and selected the
ones that actually fixed the vulnerability. We summarize in
Figure 2 the process we followed to find the fixing commits
for a given CVE Entry.

We noticed that some patches for the old vulnerabilities
from Apache HTTP were reported also on the mailing list
of the project. However, there was a mismatch between the
author who committed the patch in the repository and the one
who wrote it in the mailing list. We keep both the authors in
the dataset separately, because the committers could slightly
modify the patch before the commit.

For each commit done to fix the vulnerability, we considered
(1) the list of files changed, (ii) the number of lines modified,
and (iii) the author of the commit and the name of the author
of the patch from the mailing list, if they were different.

We report in Table II the details of our dataset. It is
worth noting that some CVE Entries were disputed by the
Apache HTTP project members, while in some cases they
were not considered as security threats at all. We ignore such
vulnerabilities if no commits were done. In one case, we found
a disputed CVE Entry with a fixing commit which updated
the documentation. We include such a commit in our dataset.
Therefore, in total, our dataset contains 239 vulnerabilities
with the related fixing commits.

C. Experimental procedure

To answer RQq, we first compute the experience of the
developers and the ownership of the files using the GitHub

O O—0—0—0—0—0—0-0
.) W,),)
First Earliest Latest Last
GitHub commit vulnerable patched commit
Repository release release

O_O_ Direct links from

the CVE Entry
Commits with the

O—O— CVE-ID in the

message

Commits with
O— related keywords
in the message

Manual filtering

Vulnerability patching
commits

Fig. 2: The process we followed to find fixing commits for a CVE Entry.

TABLE II: Details on the dataset.

. CVE Entries Fixes
Project
Fixed No fix found Disputed Not a vulnerability = Duplicated Commits Authors
Apache HTTP Server 130 57 3 5 0 378 44
Apache Tomcat 109 16 0 2 1 232 10

repositories of the projects we kept into account. We compute
the experience of a developer at a given point in time as the
number of commits they did in the repository at that date. Note
that the number of commits is in general used as a proxy of
developer’s experience (see e.g., [18]).

As for the ownership, we first retrieve the commits regarding
each file at a given point in time; then, we assign the ownership
to the author that did the majority of the changes (i.e., number
of added, modified, or deleted lines of code). If many authors
did the same number of changes, we assigned the ownership
to the one of them who did the earliest commit.

It is worth noting that in both cases we did not compute
experience and ownership in general, but in time. Indeed,
the projects we considered have a long life time (23 years
for Apache HTTP and 19 years for Apache Tomcat) and the
experience of an author may significantly vary in time. In this
context, we are interested in the experience of an author at the
time of the commit. The same is true for the ownership.

We considered commits and patches separately to analyze
the experience of the developers who fix vulnerabilities. For
all the CVE Entries fixed only with commits, for each vulnera-
bility, we computed (i) the experience of the authors of the fix
and (ii) the mean experience of all developers (the team) at the
time of the fix. We use a paired Wilcoxon Signed-Rank test to
check if the difference between the experience of vulnerability
fixers and other members of the team is significant; we reject
the null hypothesis (i.e., there is no difference in terms of

experience between vulnerability fixers and other members
of the team) if the p-value is lower than 0.05. We also use
Cliff’s delta [7] to check the magnitude of such a difference.
We consider the difference negligible if |§| < 0.148, small if
0.148 < |0] < 0.33, medium if 0.33 < |§| < 0.474, and large
for |6] > 0.474 [8].

We also check if there is a relationship between file own-
ership and fix to have a better understanding on who fixes
vulnerabilities. Specifically, we check if the authors of the
commits only modify files that they own at the time of the
fix. We consider three possible scenarios:

1) all the developers who contribute to the fix only modify
only the files they own;

2) none of them modifies the files they own;

3) there are both cases in which they modify files they own
and files they do not own.

For each CVE Entry we decide which is the case and we report
the frequency of each scenario.

We report the results about the patches found on the mailing
lists separately, since we do not have precise data about the
experience of the authors. We assume that such authors did not
have yet enough experience on the project, therefore they are
not allowed to commit directly on the repository. We report the
number of external patches that we found and the percentage
of authors that became committers of the project later.

To answer RQs, we first compute the exposure time of each
vulnerability. To do this, we compute the difference between

the date in which the CVE Entry was published and the date
in which the last commit regarding the fix of the vulnerability
was done. Negative values indicate that the CVE Entry was
published after the vulnerability was fixed.

It is worth noting that such an estimate is optimistic: we
assume that an attacker is aware of a vulnerability only if a
CVE Entry is published. However, an attacker can potentially
acquire such information from other sources, such as the
change log of a release. Therefore, if a vulnerability was not
completely fixed after a release i, i.e., it shows up again after
in the release 7 4 1, an attacker could potentially exploit such
a vulnerability. We report the number of vulnerabilities not
completely fixed in a release to understand the magnitude of
this phenomenon. To this end, we check the versions affected
by each vulnerability from its CVE Entry. If two different
versions were affected by the same vulnerability, we say that
the first fix was incomplete, otherwise we assume it was
complete.

While for Apache HTTP the version naming is straightfor-
ward, e.g., version 2.2 comes after version 2.1, for Apache
Tomcat the situation is different. Indeed, Tomcat provides
parallel major versions. For example, if a vulnerability regards
versions 6, 7, and 8, this does not mean that the fix was not
complete. Instead, it means that the core part, shared by the
three versions, was affected. Therefore, for Tomcat, we say
that a CVE Entry had an incomplete fix only if at least two
different versions of the same branch were affected (e.g., 6.0.1
and 6.0.2).

Finally, we estimate the time needed by the developers
to work on the vulnerabilities. To do this, we compute the
difference between the dates of the last and the first commit of
the fix. It is worth noting that this is a conservative estimation
of the actual time needed, since we ignore the time needed to
make the first commit. We ignore the fixes that required just
a single commit.

To answer RQg, for each CVE Entry we compute (i) the
number of commits, (ii) the number of files changed, and (iii)
the number of lines changed. We report the distributions of
such values to understand how a typical vulnerability fix looks
like.

Finally, for each CVE, we verify if the change is global or
local. We say that a fix is local if it involves only source files
belonging to the same subsystem; otherwise, we say that a fix
is global if it involves source files from many subsystems. In
both the cases we assume that the source files in the same
folder belong to the same subsystem. We filter source files
based on the extensions (i.e., “.h” and “.c” for Apache HTTP
and “java” for Apache Tomcat). Specifically, for Apache
Tomcat we consider only the “.java” files in the java folder,
to ignore all the test cases. We also report the cases in which
no source files were modified to fix a vulnerability.

Our research questions and the analysis we did to answer
them are summarized in Table III.

TABLE III: Research Questions.

Research Question Analysis

Authors’ experience

RQ;:: Who? .
Authors’ ownership of patched files
Exposure time
RQ2: When? Completeness of the fix
Fix time
Number of commits
RQ3s: How? Patch size

Patch locality

D. Replication Package

We release our dataset® to insure the replicability of our
results and to allow the research community to perform
additional analysis. For privacy reasons, we do not report in
our dataset the email addresses of the developers.

III. EMPIRICAL STUDY RESULTS

In this section we report the results of our empirical study.

A. RQy: Who Fixes Software Vulnerabilities?

In Table IV we compare the mean experience of developers
who fix vulnerabilities to the mean experience of the whole
developing team. For both the systems, the developers who fix
software vulnerabilities are much more experienced than the
average.

This difference is particularly evident for Apache Tomcat.
In this case, the mean maximum experience of developers over
the history of the project is about 6,167 commits, while the
mean vulnerability fixers’ experience is about 5,295 commits.
This means that the developers who fix the vulnerabilities are
among the most experienced developers in the project. More
precisely, in Apache HTTP there are just 44 developers who
patched software vulnerabilities, while in Apache Tomcat there
are only 10. Moreover, there is a negligible difference in terms
of experience between the developers who fix vulnerabilities
and the developers with the maximum experience at that
point in the history of the project. Nevertheless, there are
still cases in which vulnerabilities are fixed by developers less
experienced than the average (20% for Apache HTTP and 4%
of the cases for Apache Tomcat).

We report in Figure 3 the distributions of the experience
of the developers who fix vulnerabilities and the one of the
average team member. In both cases, the first quartile of the
vulnerability fixers is close to the third quartile of the average
team members. It is worth remarking again that the experience
of vulnerability fixers in Apache Tomcat is generally higher.
We discuss this more in depth in Section IV.

Figure 4 shows in what percentage both the projects are
modified by (i) only owners, (ii) only non-owners, (iii) both.
It is clear that the developers who fix vulnerabilities are usually
not owners of the files they modify in most of the cases for
Apache HTTP (80%). Also in Apache Tomcat the majority

3 https://dibt.unimol.it/report/cve-icst2019/

TABLE IV: Experience (number of commits) of vulnerability fixers.

Project Vulnerability Fixers Others Difference Significance (p-value) Effect Size
Apache HTTP Server 645.4 197.8 447.6 < 0.001 0.55 (large)
Apache Tomcat 5,294.5 374.0 4,920.5 < 0.001 0.70 (large)
Apache HTTP Apache Tomcat
.Owners Mixed.Non—owners
2500 g
4 100.0%
2000
10000
1500 80.0% 80%
1000 5000
60.0%
500
$
0 | ! 0 ' _ 41%
) ! 40.0%
Fixers Team Fixers Team
. . , , . 30% 299
Fig. 3: Vulnerability fixers’ vs. mean team’s experience.
20.0%

of CVE Entries are fixed by non-owners, even if this happens
less frequently (41%). This means that there are developers
specialized in fixing vulnerabilities that change the files even
if they are not the most experienced developers for those files.

We analyzed more in depth this phenomenon. We consid-
ered the files appearing in each CVE Entry and we computed,
for each of them, how many times it was modified by the
author of the patch at that point in time. We report in
Table V the distribution of the percentage of changes that
the developers who fix vulnerabilities did to the file before
the patch. We confirm that most of them rarely contributed
to the files. For Apache HTTP, we found that in 531 file
changed during the fixes of vulnerability out of 855, the fixers
accounted for less than 10% of the total changes. For Apache
Tomcat, instead, this scenario, i.e.,, the fixers that accounted
for less than 10% on that files of the total changes, was
observed on 237 files of 877.

Combining both the results, we can conclude that vulnera-
bility fixers are experienced developers who generally do not
own the files they modify. This result is counter-intuitive: since
we measure both experience and ownership in terms of number
of changes done by the developers, it would be reasonable
to think that experienced developers are more likely to own
many files of the project. Therefore, the probability of having
fixes involving files owned by the vulnerability fixers should
be high. This is not the case for Apache HTTP: only in less
than 20% of the cases the vulnerability fixers modify at least a
file they own. However, on Apache Tomcat 41% of the fixers
have been performed by non-owners of the modified files.

We also analyzed the patches in the mailing lists: we found
40 for Apache HTTP and only 5 for Apache Tomcat. This
is in line with what we observed, i.e., Apache HTTP uses a

9% 11%

Apache HTTP Apache Tomcat

Fig. 4: Vulnerability fixers’ ownership of modified files.

TABLE V: Distribution of the relative number of changes by
patchers to the files involved in CVE Entries patches.

Project Min. Q1 Median Q3 Max.
Apache HTTP Server < 0.1% 1.2% 4.5% 25.0% 100.0%
Apache Tomcat <0.1% 92% 36.3% 100.0% 100.0%

more traditional open-source approach to fix vulnerabilities.
The authors of such patches are 26 for Apache HTTP and
4 for Apache Tomcat. We found that 48% of the authors of
patches for Apache HTTP became committers of the project
later; for Apache Tomcat, instead, only one of the four authors
became an actual contributor.

Summary of RQ;. The developers who fix software
vulnerabilities are very experienced and they usually are
not the owners of the files affected by the vulnerabilities.

B. RQ>: When are vulnerabilities fixed?

Figure 5 shows the distribution of the days lapsed between
the publication date of the CVE Entry and the date of the last
commit for both the projects.

First, it is worth noting that the majority of the values are
negative. This means that the CVE Entry was disclosed after
the vulnerability was fixed. This is the desirable scenario,
because an attacker would not be able to use the information

200

100

-100

-200

Apache HTTP Apache Tomcat

Fig. 5: Days of exposure of vulnerabilities (without outliers).

given in the CVE Entry. The median of both the distributions is
negative: -12 days for Apache HTTP and -54 days for Apache
Tomcat. This means that CVE Entries about the vulnerabilities
that affect Apache HTTP become CVE Entries in less than
two weeks, while the ones affecting Apache Tomcat need
almost two months. This could mean that (i) CVE Entries are
published faster for Apache HTTP, or that (ii) vulnerabilities
are fixed faster in Apache Tomcat.

There is a non-negligible number of cases in which the
vulnerabilities were fixed only after the related CVE Entry
was published: for Apache HTTP there are 28 of such cases
(20.2%), while for Apache Tomcat there are only 7 of them
(6.3%). The most interesting aspect, though, is that some
vulnerabilities require a very long time to be fixed. We
manually analyzed some of the cases in which the days of
exposure of the vulnerabilities was higher than 10 days.

For Apache HTTP, the CVE Entry with the longest exposure
time was CVE-2003-1418. Such a vulnerability was never
officially fixed in Apache HTTP: a RedHat developer declared
that it “poses no threat to the target machine running httpd”
[4]. However, we found a commit [2] that partially addresses
it after about 7 years since the publication date. It is worth
noting that the CVE Entry reports that such a vulnerability
has a partial confidentiality impact “There is considerable
informational disclosure” and the assigned CVSS score is 4.3.

Another interesting case is the vulnerability reported in
CVE-2003-0132. Most of the fixing commits were done before
the publishing date of the CVE Entry. However, two commits
were done after the publishing date: in one of them, there was
just reformatting of the code (indentation adjustment), but in
the other one [1] it was addressed a corner case which could
actually result in the vulnerability exploit. The fix of other
vulnerabilities, instead, was simply delayed for no specific
reason. The related CVE Entries are:

o CVE-2001-0925 (fixed after 148 days);
« CVE-2003-0020 (first commit after 251 days, completely

fixed after 300 days);
o CVE-2007-6420 (fixed after 147 days);
o CVE-2013-5704 (fixed after 91 days).

As for Apache Tomcat, we found that, in some cases, the
longer exposure time was due to the fact that the fix did not
cover all the corner cases (CVE-2008-2938, CVE-2007-0450
and CVE-2007-3385, with 4 years of exposure for the first
two and 101 days for the third one); however, according to the
authors of the patches, such corner cases are not exploitable.
In another case (CVE-2008-3271, with 50 days of exposure)
we could not find any specific reason for the delay.

We also found few vulnerabilities with incomplete patches.
For Apache HTTP we found 5 of such vulnerabilities (i.e.,
3.5%), while for Apache Tomcat only 3 (2.6%). In most of
the cases, the CVE Entries related to such vulnerabilities were
published only after the actual vulnerability was fixed, which
slightly reduces the risks of exploit. Nevertheless, these are
still very dangerous cases: a release is done with vulnerable
code apparently fixed; such a fix is reported in the change
log of the project; the released version could be installed in
some production environments; in the meanwhile, an attacker
could know about the vulnerability, check if the patch was
complete and, if not, try to exploit it whatsoever. It is worth
noting that updating software like Apache HTTP and Tomcat
in a production environment requires the restart of the service,
causing a downtime of the web applications. Therefore, the
update of such components is reasonably done not too often, in
order to avoid such a problem [17]. This further increases the
risk connected to incomplete patches and the cost of updating
such releases in production.

Finally, Figure 6 shows the distribution of the days lasted
since the first to the last commit of the fix. Typically, such
a time is short (8 days median for Apache HTTP and 5 for
Apache Tomcat). However, also in this case there are several
outliers, and, in the worst cases, the number of days lasted is
very high. We observed that the biggest delay was for CVE-
2008-2938, reporting a vulnerability that affected Apache
Tomcat. The core of such a vulnerability was fixed in 2008, but
two additional commits were done in 2013 (after 4 and a half
year) to cover some corner cases [3]. Such commits introduce
a test case that finds a failure in the program. However, the
author of the commit highlights in the commit message that
such a failure is not exploitable. Indeed, the original patch is
officially considered as complete, since the vulnerability only
affects a single version of the software.

Summary of RQ:. Most of the vulnerabilities are
fixed before their CVE Entry is published; however, we
observed some potential threats due to incomplete fixes.

C. RQs3: How are vulnerabilities fixed?

Table VI shows some statistics about the number of com-
mits, files and lines modified for each vulnerability fix.

It can be seen that the typical vulnerability fix is done with
few commits (less than 2, usually). Also, the number of files
modified is very small: a typical patch for a vulnerability

1000

100

10

Apache HTTP Apache Tomcat

Fig. 6: Days lasted since the first to the last commit when

more than a commit was done (without outliers).

TABLE VI: Statistics on the number of commits done and
files/lines changed in a vulnerability fix.

Commits
Project Min. Q1 Median Q3 Max.
Apache HTTP Server 1 1 1 2 60
Apache Tomcat 1 1 1 2 21
Files
Project Min. Q1 Median Q3 Max.
Apache HTTP Server 1 2 2 5 65
Apache Tomcat 1 2 4 7 162
Lines
Project Min. Q1 Median Q3 Max.
Apache HTTP Server 1 12 45 112 3,065
Apache Tomcat 1 19 71 218 9,846

involves few files (median 2 and 4) and also few lines (median
45 and 71). However, some vulnerabilities required many
changes and they involved many files and lines of code.

We report in Figure 7 the distribution of the file types
involved in the vulnerability fixes. As expected, most of the
changes involve source code (70% for Apache HTTP and 66%
for Apache Tomcat). We observed that developers often report
the fix in the change logs of the project (i.e., CHANGES for
Apache HTTP and changelog.xml for Apache Tomcat).

We also checked how many test files (i.e., test cases or test
data, such as JSP pages for Tomcat) were added or modified
in the process of vulnerability patching. For Apache HTTP we
found 2 test files, each of them appearing in the patch of a
single CVE Entry. Instead, for Apache Tomcat we found (i)
12 test files appearing in the patch of a single CVE Entry, (ii)

Apache HTTP Apache Tomcat

100.0% 100.0%
80.0% 80.0%
66%
60.0% 58% 60.0%
40.0% 40.0%
20.0% 0
14% 10, 20.0% 14%

@
X
o
S
2
>

. = .
L
2% 4%
i | T
E

CHANGES
java
ml
Isp
html
properties
Others

Fig. 7: Distribution of the extensions of the file changed in
vulnerability fixes.

TABLE VII: Locality of the changes.

Project Local changes Global changes No code involved
Apache HTTP 68.8% 28.3% 2.9%
Apache Tomcat 46.8% 44.1% 9.0%

3 test files appearing in the patch of two CVE Entries, and
(iii) a test file appearing in the patch of three CVE Entries.

Table VII shows the locality of the changes made to fix the
vulnerabilities in the two projects. In both cases, local changes
are more frequent. This is more evident for Apache HTTP
(68.8%), while for Apache Tomcat they are almost equal. This
can be due to the fact that Java packages are usually smaller
than C modules. An interesting fact is that a quite large number
of vulnerabilities are fixed without changing any line of source
code. We analyzed such cases:

o for Apache HTTP, the fix involved build configuration
(CVE-2003-0017), writing better documentation to avoid
configuration errors (i.e., CVE-2012-0883 and CVE-
2006-4110);

« for Apache Tomcat, instead, such vulnerabilities regarded
insecure example applications (e.g., CVE-2006-7196 and
CVE-2007-1355), issues with default configuration (e.g.,
CVE-2007-5342 and CVE-2009-3548), vulnerabilities in
dependencies (CVE-2011-2729) or other scripts (CVE-
2017-15706).

Summary of RQs. Vulnerability patches are usually
small, they require few commits and they are local.
Surprisingly, some fixes do not even require the modi-
fication of source code.

IV. DISCUSSION AND LESSONS LEARNED

The results presented in Section III allow us to make inter-
esting conclusions about how vulnerability fixing is performed.
First, there are patterns that repeat in both the projects: expe-
rienced developers who are not always very experienced with
the files with the vulnerabilities are the ones that, more likely,

fix the vulnerabilities; CVE Entries are generally published
after the vulnerability is fixed; vulnerabilities are fixed with
few commits, and they generally involve a low number of
files/lines.

We can conclude that it is easy to create such patches
(because they are short), but it is hard to spot them (because
experienced developers are needed). Also, we observed that
vulnerabilities are hard to test: few of them require additional
commits that are done even years after the original patch was
released. While this may be true also for normal bugs, in this
context it should be critical to have complete patches in a short
time and, above all, before the information is public.

Lesson 1. Software vulnerabilities are quite easy to fix,
but hard to spot and to test.

While for both the projects the vulnerability fixers are more
experienced than the average, we found that in Apache Tomcat
such a difference is more extreme. Besides, we also observe
that both the exposure and fix time in such a project is
generally lower. There are many factors that may affect this,
such as the programming language. However, we observed
that Apache Tomcat has a very small and active security team
that handles the vulnerabilities (10 developers) compared to
Apache HTTP (44 developers).

We also found that in Apache Tomcat most of the vulner-
abilities were fixed by a single developer, who is a security
expert. The high level of expertise of vulnerability fixers both
on the project and on security aspects might be the reason why
Apache Tomcat seems more reactive in the fixing process.

Lesson 2. Having a security team with few and experi-
enced developers seem to benefit open source projects’
vulnerability fixing process.

The distribution of the files modified depicted in Figure
7 shows that developers usually document the vulnerabilities
they fix in the change logs. However, this does not always
happen. Generally, we found quite difficult tracking some vul-
nerabilities to the commits done to patch it. This is true above
all for older CVE Entries, but we found also new CVE Entries
affected by such a problem. Having explicit links between
CVE Entries and fixing commits may help both researcher,
who would be able to devise more easily approaches to
automatically fix vulnerabilities, and practitioners, who would
be able to easily browse similar vulnerabilities to find past
solutions to similar present problems.

Lesson 3. Information in the vulnerability databases are
often lacking a link to the fixing commits.

V. THREATS TO VALIDITY

Threats to construct validity regard the relationship between
theory and observations. The main threat of such a kind in our
study is due to the dataset building, i.e., to the linking between
CVE Entries and related fixing commits/patches. To minimize
the risk of having commits not actually related to a CVE Entry

or to miss commits, we relied on manual analysis to perform
such a task.

Threats to internal validity concern internal factors of our
study that could influence the results. To answer RQ; we rely
on “number of commits” to measure the experience of devel-
opers and on “number of changes” to decide the ownership
of a file. It could happen that some developers prefer to make
commits more frequently than others (regardless the number
of changes actually made in the project): this would result in a
larger experience in our dataset, not actually present in reality.
As for the ownership, it can happen that many developers made
similar number of changes to a file, but we assume that only
a developer is the owner of each file. However, in general the
number of commits represents a good proxy of developer’s
experience [18].

Moreover, to answer RQ2 we measure the exposure time,
the time needed for the fix and we distinguish complete from
incomplete fixes. Both exposure and fix time are lower bounds,
i.e., the actual exposure and fix time is larger or equal to the
one we report. Indeed, for the exposure time we assume that
the only way an attacker can know about a vulnerability is
through CVE Entries, which is not always the case. To mitigate
this threat, we report also the number of vulnerabilities not
completely fixed. This allows us to keep into account another
potential scenario in which vulnerabilities are disclosed before
the actual fix is released. As for the fix time, we ignore the
time needed to make the first commit. We did this because
there is no reliable way of estimating such a time.

Threats to external validity concern the generalizability
of our results. We considered only two projects from the
Apache ecosystem. It is worth remarking that the manual
analysis needed to build our dataset makes such a study
hardly scalable. Furthemore, it is worth remarking that both
the systems we took into account are two projects from the
Apache ecosystem. Since such projects may have similar
governance rules and contribution guidelines the dataset may
not be very representative and may influence our results. We
choose, however, to study the two projects with the highest
number of vulnerabilities in the Apache ecosystem. We expect
differences in other projects. We plan to cover more projects
from the Apache ecosystems in future work.

VI. RELATED WORK

The most related work is a large-scale empirical investiga-
tion done by Li and Paxson [10]. In their study, the authors
built a large dataset containing more than 3,000 CVE Entries
and the related fixing commits using an automated approach.
The authors report an analysis on various aspects of vul-
nerability fixing from the security perspective. Such analysis
include (i) the duration of the impact of vulnerabilities, (ii) the
reliability of the fix, (iii) the difference with non-security fixes.
Our investigation is more from an engineering perspective. We
focus our analysis on the developers who produce the patches,
on the patching timing and process. We could not use the
dataset by Li and Paxson because it is not publicly available.
Even if our dataset is much smaller, it was manually built by

analyzing the commits possibly involved in the fix to achieve
a high level of completeness, i.e., to minimize the likelihood
of missing patching commits for the CVE Entries or to include
non-related commits.

Shahzad et al. [19] report a large-scale explorative study on
the vulnerability life-cycle. They report insightful trends, such
as the fact that vulnerabilities exploitable from remote grew
to more than 80% of the total in 2011. They also show that
patching in closed-source software is usually faster compared
to open-source software. In our work we studied more in depth
the patching practices focusing only on open-source projects,
and our results suggest that a vulnerability patching process
more similar to the one used in closed-source software (i.e.,
the one used in Apache Tomcat) is more effective than a
typical open-source development approach (i.e., the one used
in Apache HTTP).

Huang et al. [9] analyzed 131 patches from five open-source
projects, and they showed that, in some cases, developing a
patch required much time and it was error-prone. They use
such results to justify the introduction of a new approach
for minimizing the patch delay. Moreover, Nappa et al. [17]
studied the patch deployment process in ten client applications.
They found that only 28% of the patches reach 95% of the
hosts in the observation period. Differently from them, we
focus on the engineering process of vulnerability fixing.

Other studies focused on the relationship between devel-
opers characteristics and the introduction of vulnerabilities.
Meneely et al. [11] investigated the influence of Linus’ Law
on security, analyzing code review participation. Linus’ Law
is declared by Eric Raymond as “many eyes make all bugs
shallow”. More specifically, this study analyzed the association
between collaborative reviews and vulnerabilities that were
missed by the review process. Their results show key risk
factors of using Linus’ Law with vulnerabilities, namely the
lack of security experience and lack of collaborator familiarity.
In our work, we focus on vulnerability patching instead of
vulnerability introduction. However, similarly to Meneely et
al. [11], we also consider the authors of the patches in our
analysis.

Camilo et al. [6] performed an in-depth analysis of the
Chromium project to examine the relationship between bugs
and vulnerabilities. They collected bugs and post-release vul-
nerabilities over five Chromium releases on six years of
development. They examined how various categories of pre-
release bugs and review experiences are associated with post-
release vulnerabilities. Their results indicate that bugs and
vulnerabilities are empirically dissimilar groups. Our work
differs from this study because we focused on vulnerability
fixing instead of vulnerability introduction.

Several studies have found a consistent statistical association
between metrics that quantify the developer activity and the in-
troduction of vulnerabilities [12]-[16]. These studies regarded
the development of socio-technical metrics with various tech-
niques, i.e., interactive churn [16], developer networks [14],
[15], and developer network clustering [13].

Bosu [5] analyzed how the experience affects the effective-

ness of the code reviews in terms of vulnerabilities. The author
used 10 popular Open Source projects to identify vulnerable
code changes. The results show that the contributions of inex-
perienced developers are more likely to lead to the introduction
of software vulnerabilities.

Finally, Yin et al. [21] studied and characterized incorrect
bug-fixes. They analyzed both error patterns and human
reasons behind the development of incorrect patches. In this
study we also analyze incorrect patches, but we focus on
software vulnerabilities only.

VII. CONCLUSION AND FUTURE WORK

We presented an empirical investigation on the vulnerability
fixing process by analyzing the complete history of two open-
source projects, Apache HTTP and Apache Tomcat. We stud-
ied such a phenomenon from three different perspectives: who
fixes software vulnerabilities, when it happens, how it is done.
We built a dataset containing 239 software vulnerabilities,
manually linking them to the fixing commits in the revision
history of the projects, for a total 610 commits.

Our results show that developers who work on software
vulnerabilities are much more experienced than the average.
Moreover, they usually do not modify the files they own. We
also showed that vulnerabilities are mostly fixed before they
are publicly disclosed. However, we found and analyzed some
examples in which vulnerabilities were not completely fixed
after the vulnerability was disclosed. Some vulnerabilities still
received fixing commits 4 years after the CVE Entry was
published and the partial patch was implemented and released.

Finally, we observed that most of the vulnerability patches
are trivial, i.e., few files and lines modified. Also, the develop-
ers usually make few commits to fix vulnerabilities. However,
also in this case we found some exceptions.

The results of our study open interesting and novel research
directions. For instance, we found that vulnerability patches
were not complete in about 3% of the cases. Also, we showed
that testing security patches is not always easy. Thus, an
approach able to automatically understand when a patch is
partial, either by generating test cases or by using machine
learning, is particularly useful to mitigate the high danger of
partial patches.

We also observed that developers document their vulner-
ability fixes, but they are not supported in doing that. Most
likely, an automated approach that recognizes and documents
such changes would be welcome.

Finally, we found that vulnerability databases often lack
explicit links to the fixing commits. In our study we manually
defined such links. An automated approach with this purpose
would greatly benefit both researchers and practitioners.

Addressing some or all the above issues is part of our
agenda for future work. In addition, our data suggest that a
small and much more experienced security team can benefit
the whole vulnerability fixing process. We plan to verify this
trend with a larger empirical study involving many different
software projects.

[7

—

[8]
[9

[10]

[11]

[12]

REFERENCES

Apache http fix of cve-2003-0132. https://git.io/thV6S. Accessed: 2018-
10-11.

Apache http fix of cve-2003-1418. https://git.io/fhV6y. Accessed: 2018-
10-11.

Apache tomcat fix of cve-2008-2938. https://git.io/thV69. Accessed:
2018-10-11.

Redhat cve-2003-1418. https://access.redhat.com/security/cve/cve-2003-
1418. Accessed: 2018-10-11.

A. Bosu. Characteristics of the vulnerable code changes identified
through peer code review. In Companion Proceedings of the 36th
International Conference on Software Engineering, pages 736-738.
ACM, 2014.

F. Camilo, A. Meneely, and M. Nagappan. Do bugs foreshadow
vulnerabilities?: a study of the chromium project. In Proceedings of
the 12th Working Conference on Mining Software Repositories, pages
269-279. IEEE Press, 2015.

N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3):494, 1993.

R. Grissom and J. Kim. Effect Sizes for Research: A Broad Practical
Approach. Lawrence Erlbaum Associates, 2005.

Z. Huang, M. DAngelo, D. Miyani, and D. Lie. Talos: Neutralizing
vulnerabilities with security workarounds for rapid response. In 2016
IEEE Symposium on Security and Privacy (S&P), pages 618-635. IEEE,
2016.

F. Li and V. Paxson. A large-scale empirical study of security patches.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2201-2215. ACM, 2017.

A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis. An empirical investigation of
socio-technical code review metrics and security vulnerabilities. In
Proceedings of the 6th International Workshop on Social Software
Engineering, pages 37-44. ACM, 2014.

A. Meneely and L. Williams. Secure open source collaboration: an
empirical study of linus’ law. In Proceedings of the 16th ACM

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

conference on Computer and communications security, pages 453—462.
ACM, 2009.

A. Meneely and L. Williams. Strengthening the empirical analysis of the
relationship between linus’ law and software security. In Proceedings
of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, page 9. ACM, 2010.

A. Meneely and L. Williams. Socio-technical developer networks:
Should we trust our measurements? In Proceedings of the 33rd Inter-
national Conference on Software Engineering, pages 281-290. ACM,
2011.

A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures
with developer networks and social network analysis. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, pages 13-23. ACM, 2008.

A. Meneely and O. Williams. Interactive churn: Socio-technical variants
on code churn metrics. In Int’l Workshop on Software Quality, pages
1-10, 2012.

A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras. The
attack of the clones: A study of the impact of shared code on vulner-
ability patching. In 2015 IEEE Symposium on Security and Privacy
(S&P), pages 692—708. IEEE, 2015.

F. Rahman and P. T. Devanbu. Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering, pages 491-500. ACM, 2011.

M. Shahzad, M. Z. Shafiq, and A. X. Liu. A large scale exploratory
analysis of software vulnerability life cycles. In 2012 34th International
Conference on Software Engineering (ICSE), pages 771-781. IEEE,
2012.

R. Telang and S. Wattal. An empirical analysis of the impact of software
vulnerability announcements on firm stock price. IEEE Transactions on
Software Engineering, (8):544-557, 2007.

Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How
do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE 11, pages 26-36, New York, NY,
USA, 2011. ACM.

