
Data-Driven Solutions to Detect API Compatibility
Issues in Android: An Empirical Study

Simone Scalabrino∗, Gabriele Bavota†, Mario Linares-Vásquez‡, Michele Lanza†, and Rocco Oliveto∗
∗University of Molise, Italy — ‡Universidad de los Andes, Colombia

†Università della Svizzera italiana (USI), Switzerland

Abstract—Android apps are inextricably linked to the official
Android APIs. Such a strong form of dependency implies that
changes introduced in new versions of the Android APIs can
severely impact the apps’ code, for example because of deprecated
or removed APIs. In reaction to those changes, mobile app devel-
opers are expected to adapt their code and avoid compatibility
issues. To support developers, approaches have been proposed
to automatically identify API compatibility issues in Android
apps. The state-of-the-art approach, named CID, is a data-driven
solution learning how to detect those issues by analyzing the
changes in the history of Android APIs (“API side” learning).
While it can successfully identify compatibility issues, it cannot
recommend coding solutions.

We devised an alternative data-driven approach, named
ACRYL. ACRYL learns from changes implemented in other
apps in response to API changes (“client side” learning). This
allows not only to detect compatibility issues, but also to suggest
a fix. When empirically comparing the two tools, we found that
there is no clear winner, since the two approaches are highly
complementary, in that they identify almost disjointed sets of API
compatibility issues. Our results point to the future possibility of
combining the two approaches, trying to learn detection/fixing
rules on both the API and the client side.

Index Terms—Android, API Compatibility Issues, Empirical
Study

I. INTRODUCTION

Android APIs are well know to be change-prone [1]–[4]
because of the rapid evolution of the Android platform, which
continuously provides users and developers with novel features.
As a consequence of this fast evolution and of the high-
dependability of mobile apps on the APIs [5]–[8], developers
have to quickly react to newly released APIs to avoid issues
related to API breaking changes.

In addition to breaking changes, fragmentation is also a
well-known problem in Android [9]–[14]: The high number of
hardware devices supporting Android, the fast evolution of the
Android APIs/OS, and the existence of customized versions of
the APIs/OS deployed by Original Equipment Manufacturers
(OEMs) on their devices, leads to a vast number of possible
running environments for an app [9], [10], [15].

Both Android API evolution and fragmentation lead to API
incompatibility issues in Android apps. Therefore, developers
have to constantly watch for API release notes and identify how
new and deprecated APIs should be used to avoid introducing
bugs in the apps when running on specific environments. To
illustrate an API incompatibility issue, let us introduce the
Github issue 5059 of the libgdx framework (fixed in commit
88e0b2e). The issue states that some sounds are not played

anymore, because of changes to the Android API. Therefore,
conditional statements should be added to let the app know the
Android version executed by the device, to adapt its behavior.
This type of compatibility issues are common and have inspired
approaches to automatically detect them [11], [16]–[18].

Those approaches detect API compatibility issues by relying
on detection rules that are either hand-crafted or automatically
mined from the API documentation. This latter is the solution
adopted by CID [18], the state-of-the-art tool using a data-
driven solution able to learn how to detect API compatibility
issues by analyzing the changes in the history of Android APIs
(“API side” learning). While CID is able to detect these issues,
it lacks patch suggestion.

We propose a data-driven solution, ACRYL, which adopts
a different approach: it learns from changes implemented in
other apps in response to API breaking changes (“client side”
learning). This allows ACRYL to (i) recommend how to fix
the detected issue, and (ii) identify suboptimal API usages in
addition to API compatibility issues. With “suboptimal API
usages” we refer to cases in which an app is using an API
available in all the versions supported by the app (thus not
being a compatibility issue) but that, starting from a specific
version, can be replaced by a newly introduced API better
suited for the implemented feature.

In addition to presenting ACRYL, we investigated the
benefits and weaknesses of “API side” and “client side” data-
driven approaches, by comparing ACRYL with CID. The
results after analyzing 11,863 snapshots of open source Android
apps show that there is high complementarity between the two
techniques, which points to the possibility of combining the
two learning approaches in the future.

II. BACKGROUND & RELATED WORK

We describe how developers deal with compatibility issues
in Android apps. Afterwards, we discuss the related literature.

A. Handling API Compatibility Issues in Android

Android apps can be used in devices running different
versions (levels) of the Android API. To deal with compatibility
issues, app developers can define a range of API levels they
officially support. This is done by setting two attributes in
the Android manifest file: android : minSdkVersion and
android : targetSdkVersion. By defining those attributes,

developers indicate to the Google Play store which devices
can download and install an app [19]1.

Each version of the Android API can include changes
impacting, more or less severely, the apps’ code. This includes
deprecated APIs, new APIs (possibly replacing the deprecated
ones), and removed APIs, generally already deprecated a few
versions earlier. Therefore, in addition to the SDK-version
attributes in the manifest, Android developers generally include
in their apps code implementing Conditional API Usages
(CAUs), as in the example below:

1 public void setBackground(View view , Drawable image) {
2 if (Build.VERSION.SDK_INT < VERSION_CODES.JELLY_BEAN) {
3 view.setBackgroundDrawable(image);
4 } else {
5 view.setBackground(image);
6 }
7 }

CAUs are code blocks that check the current Android version
on which the app is running and, based on the result of this
check, establish the code statements to execute, including
invocations to specific APIs. For example, if the Android
version is lower than X , APIi is invoked, otherwise, a call to
APIj is performed. The version of the API on which the app is
running is identified at runtime by using the VERSION_SDK_INT
global attribute or the specific constant available for each level
of the Android API (e.g., VERSION_CODES.JELLY_BEAN) [20].
CAUs can be used to handle different types of compatibility
issues related to backward (i.e., potential problems with older
SDK versions) and forward (i.e., potential problems with new
SDK versions) compatibility.

B. Related Work

Much research has been done on API misuses (e.g., [21],
[22]) and deprecated APIs [23]–[27]. We focus our discussion
here on works related to Android APIs. The problem of API-
induced issues in Android apps has been widely discussed by
practitioners and researchers. For example, the change- and
fault-proneness of Android APIs have been shown to have a
direct impact on the apps quality as perceived by users [2]–[4].

Besides the change- and fault-proneness of APIs, the problem
of inaccessible Android APIs has also been recently studied by
Li et al. [28]. An API is defined as inaccessible when (i) it is not
part of the public API, (ii) it is not hidden to developers, since
it can be used via reflection-based invocations at runtime or
by building customized libraries, and (iii) provides developers
with features not provided by any public API method. Their
study shows that inaccessible APIs (i) are widely used by apps’
developers, (ii) are less stable than public APIs, and (iii) do
not provide guarantees in terms of forward compatibility.

Wu et al. [16] analyzed compatibility issues in Android
by conducting an empirical study to measure the consistency
between the SDK versions declared by developers in the
Android manifest files (i.e., the file declaring the minimum
and target SDKs supported by the apps), and the APIs used in
the apps. The results from the analysis of 24k apps show that

1 Note that a third attribute, android:maxSdkVersion, does also exist, but
the Android documentation recommends to not declare it, since by default it
is set to the latest available API version.

(i) declaring the targeted SDK is not a common practice, (ii)
about 7.5% of the apps under-set the minimum SDK versions
(i.e., they declare lower versions than the minimum required by
the used APIs), and (iii) some apps under-claim the targeted
SDK versions (i.e., the developers pick targeted versions above
the one supported by the used APIs).

Luo et al. [17] focused on API misuses in terms of
outdated/abnormal APIs (i.e., whether apps use APIs with the
@deprecated, @hide, and @removed annotations). Their
study showed that 9k+ out of 10k analyzed apps suffer from
misuses with outdated/abnormal APIs.

Device compatibility issues, and forward/backward com-
patibility issues are also due to public deprecated/removed
APIs, or to device specific compatibility issues introduced by
OEMs when modifying the original Android APIs and OS.
The seminal work by Wei et al. [11] represents a first effort to
provide developers with a solution for detecting compatibility
issues. The authors manually analyzed the source code of 27
apps looking for code patterns used by developers to fix/deal
with compatibility issues. Then, the patterns where codified into
rules that were implemented in a tool called FICFINDER. While
FICFINDER had the merit to start the work on the automatic
detection of API compatibility issues, it relies on 25 manually
decoded rules, that can easily become obsolete.

For this reason, Li et al. [18] propose an automatic approach
based on static analysis on the app and Android APIs code to
detect potential backward/forward compatibility issues. Their
approach, named CID, mines the history of Android OS to
identify the lifetime of each API (i.e., the set of versions
in which each API is available). Then, CID extracts from
an app under analysis a code conditional call graph that (i)
links app methods to API calls, and (ii) records API level
conditional checks in the graph edges. The goal is to identify
API invocations in the app that might result in compatibility
issues (e.g., an app declares to support the Android APIs from
version 11 to 23, and uses without conditional checks an API
that has been deleted in version 15). CID is the first example
of data-driven approach to detect API incompatibilities in
Android and, as shown in the extensive evaluation reported by
Li et al. [18], it ensures superior performance as compared to
FICFINDER [11]. He et al. [29] introduced ICTAPIFINDER,
a tool which, similarly to CID, learns from the evolution of
Android APIs and detects potential issues relying on inter-
procedural data-flow analysis to reduce the number of false-
positives. Both such approaches learn rules from the API-side.

C. The Present Work

We compare an API-side approach, CID, with the data-
driven approach (ACRYL) we devised to overcome some of
CID’s limitations2. While addressing the same problem using
a data-driven solution, ACRYL adopts a different approach
allowing it to identify suboptimal API usages in addition to
API compatibility issues, and to also recommend to developers
how to fix the detected issue relying on the codebase of other

2 We used CID instead of ICTAPIFINDER since it is publicly available.

2

apps (client-side approach). With “suboptimal API usages”
we refer to cases in which an app is using an API available
in all the versions supported by the app (thus not being a
compatibility issue) but that, starting from a specific version,
can be replaced by a newly introduced API better suited for
the implemented feature. To give a concrete example, the
APIs Bitmap.getRowBytes() and Bitmap.getHeight() can
be used to compute the total number of bytes in a bitmap. In
API level 12, the method Bitmap.getByteCount() has been
introduced specifically for this computation, providing a more
convenient and clean way of counting the bitmap’s byte.

CID cannot detect these suboptimal API usages and recom-
mend proper refactoring actions, while ACRYL provides full
support for them. In addition to that, ACRYL is able to identify
compatibility issues potentially involving multiple APIs (i.e.,
API patterns such as the invocation of Bitmap.getRowBytes()
and Bitmap.getHeight()), while CID only warns developers
when a single API call represents a potential compatibility
issue. These ACRYL’s advantages over CID are brought by
the fact that ACRYL learns from CAUs already defined by
developers in a large set of apps. Thus, it can not only learn the
problem (i.e., the API incompatibility being addressed with the
CAU) but also the solution (i.e., how to handle it in the code).
As we show in our empirical comparison, these advantages do
not come for free, since ACRYL misses many relevant API
incompatibility issues identified by CID. Our study shows that
the two approaches are highly complementary.

III. APPROACH

We propose ACRYL (Android Client-side Rule Learner), an
approach and a tool to automatically detect API compatibility
issues and suboptimal usages in Android apps. ACRYL is a
data-driven approach that relies on CAUs already defined by
developers in a large set of apps (Client side). ACRYL works
in three steps. First, it extracts information about CAUs from
a given reference set of Android apps. Once the set of CAUs
is extracted, ACRYL uses them to infer detection rules and
assigns a confidence level to each of them based on the number
of apps from which the rule is learned. Finally, the rules can
be used to detect suspicious API usages in a given app.

A. Step 1: Extraction of Conditional API Usages (CAUs)

To extract CAUs, it is necessary to detect the conditional
statements that check the current platform version (e.g.,
if(version < X)) and, then, the APIs used in its branches
(e.g., if the condition is true, use APIi, otherwise use APIj).
Both these tasks are not trivial and pose many challenges.

As explained in Section II, the Android APIs provide the
Build.VERSION.SDK_INT field to check the SDK version of
the software currently running on the hardware device. Thus,
looking for conditional statements checking the value of this
field might seem sufficient to identify the CAUs entry points.
However, developers may create utility/delegate functions to
get the value of the SDK_INT field or to check whether the
app is running on a specific SDK version.

1 public boolean isMarshmellow () {
2 return (Build.VERSION.SDK_INT >= 23);
3 }

Fig. 1: Example of method to check the SDK version.

Figure 1 shows an example of utility method we found in
the analyzed apps to check whether the SDK version is greater
or equal than 23 (i.e., the Marshmellow Android version).
The usage of methods like isMarshmellow() in a conditional
statement allows for checking the SDK_INT value without
explicitly referring to it.

Assuming the ability to correctly identify the conditional
statements checking (directly or indirectly) the SDK_INT value,
it is not sufficient to only look into the body of the if/else
branches to detect the API usages, since they may contain
arbitrarily deep calls to methods that only at some point use
Android APIs. For example, if the else branch contains an
invocation to method Mi that invokes method Mj, and this latter
invokes the Android API Ai, we must be able to link the usage
of Ai to the non-satisfaction of the if conditional statement.

We use the following approach to detect CAUs. Given the
APK of an app, we convert it to a jar using DEX2JAR [30].
Then, we use the WALA [31] library to analyze the obtained
Java bytecode. In particular, each method of the app is analyzed
to flag the ones (i) containing a conditional statement checking
the value of the SDK_INT field, and (ii) having a return value
depending on the result of such a checking. For example, the
isMarshmellow() method in Figure 1 would be flagged in
this phase, since it returns true if SDK_INT >= 23 and false

otherwise. This step aims at identifying all sorts of “utility
methods” that can be defined by the developers to check the
SDK_INT value. In this step we also flag methods in which
SDK_INT is assigned to a variable and, then, the variable is
used in the conditional statement. For each flagged method,
we store the mapping between the returned value and the value
of the condition. In our example, given a method invoking
isMarshmellow and using its return value in a conditional
statement, we know that the condition will be true if the
app is running on SDK_INT >= 23. In addition to literal int
values, the VERSION_CODE Android constants are also used by
developers in compatibility checks.

With this information at hand, in the second step of our
analysis we re-analyze all methods in an app with the goal
of extracting the CAUs. Here we define a CAU as a triplet
(C,At, Af), where C is the compatibility condition, and At
and Af are the sets of Android APIs called if C is true or
false, respectively. For a given triplet, At or Af can be an
empty set (e.g., in case an API is invoked if a condition is
satisfied, while no invocations are done otherwise). For each
method in the app, we check whether it invokes one of the
previously flagged utility methods in a conditional statement or
in an assignment expression that is then used in the condition,
e.g., boolean isCompatible = isMarshmellow();
if(isCompatible){...}. If this is the case, the condition in
the method is “normalized” to a standard form using the

3

corresponding SDK_INT value in the conditional statement:
if(SDK_INT〈relational_operator〉〈int_literal〉).
For example, the previous conditional statement
accessing the isCompatible variable is converted to
if(SDK_INT >= 23){...}. Once the method is normalized, we
perform inter-procedural analysis of the conditional statement
branches (e.g., if/else branches) identifying all the calls to
Android APIs3 and to collect the signatures of the calls (return
type, API class, API method, and arguments).

We then convert all triplets in the form SDK_INT <= X. This
means that for a triplet having its condition C as > X we
invert the condition (≤ X) and we swap At and Af .

At the end of the process, we obtain a set of triplets
(C,At, Af), with |At| ≥ 0 and |Af | ≥ 0. Note that, because
of the interprocedural analysis, it is possible that many API
calls are included in At and/or Af , even if only a few of them
require the CAU. In this step we keep the whole sequences,
that will be later refined (see Section III-C).

We do not consider CAUs having a condition check in the
form if(version! = X), because these rules are generally app
specific and their meaning depends on the MinSDK version
declared by the apps. To clarify, a CAU (if(version! = 11),
APIi, APIj) can have two different meanings in an app declar-
ing MinSDK = 11 and in an app declaring MinSDK = 4.
In the first case, the CAU is probably needed because versions
older than 12 need to invoke APIj, i.e., it is equivalent to
the CAU (if(version <= 11), APIj, APIi). However, since
the only version older than 12 that is supported by the app
is 11, the developer used the check in the form ! = 11. In
the second case (MinSDK = 4), the developer is instead
using the check to customize the behavior of the app on a
specific version (11) among the ones supported by the app.
Thus, in this case, the checked condition is not equivalent to
if(version <= 11). We preferred to only learn CAUs that are
more likely to represent general issues related to specific SDK
interval versions, i.e., the ones in the form (if(version <= X),
APIi, APIj), and that can be more easily generalized.

B. Step 2: Inferring Compatibility Detection Rules

Given the set of CAUs represented as triplets and extracted
from hundreds of apps, we define a detection rule as a CAU
that appears in a set of apps S. We define S the support of
the rule. To verify whether a CAU appears in multiple apps,
we first clean and standardize all extracted CAUs.

The pre-processing phase consists in removing noisy An-
droid APIs that do not bring information useful for the
extraction of meaningful rules. We filter out from At and
Af all the logging APIs, e.g., a triplet (≤ 24, Log.w,
Activity.requestPermissions) becomes equivalent to (≤
24, ∅, Activity.requestPermissions). We also exclude all
calls to android.content.Context.getString(int) and to
android.content.Context.getSystemService (String),
since these methods are quite generic and appear in many

3 We identified Android APIs by checking the package the class implementing
the API comes from. The list of packages we consider as part of the Android
APIs is available in our replication package.

of the CAUs we extracted, but with different “semantics”. For
example, getSystemService returns the “handle to a system-
level service by name”. This method supports “taskmanager” as
parameter value since SDK level 21. Therefore, some apps may
have a check before calling such a method with that specific
parameter value. However, ACRYL extracts rules considering
the complete signature of the method (including the parameter
type), but ignoring the parameter value. While considering the
parameter value is an option, this would not allow to carefully
assess the number of apps in which a CAU appears, since
two identical CAUs with different parameter values will be
considered unrelated.

Thus, if we consider getSystemService in the extracted
CAUs, ACRYL would create a rule raising a warning when
getSystemService is invoked without checking for a SDK
level higher or equal than 21, creating many false positives
(e.g., the parameter value “alarm” is supported since the first
version of the APIs). Once these APIs are removed, the pre-
processing ends with the removal of all CAUs having At = Af
(i.e., the set of APIs invoked is exactly the same independently
from the result of the condition check). This is possible in two
cases. First, At = Af differ only for the usage of one of the
three APIs we ignore (e.g., At includes logging statements,
while Af does not). Second, At and Af differ for the value of
the parameters passed at runtime that, as said, is ignored by
ACRYL. Finally, we aggregate all the equivalent CAUs and we
define the detection rules as pairs (CAU, S), where S is the
set of apps in which the CAU appears. S is used to compute
the confidence level for the rule as described in Section III-C.

C. Step 3: Rules Definition and Confidence Level

The intuition behind the confidence level is that if a rule
appears in many apps, it is likely to be meaningful and useful
to spot real issues. We do not consider the number of times
that a rule appears inside a single app as a good indication of
its reliability, since the same developer could apply a wrong
rule multiple times in her app.

Given a rule Ri = ((Cj , At, Af), S), we do not compute
the confidence level by simply counting the number of apps
in which its CAU (i.e., Ci, At, Af) appears, since this results
in a strong underestimation of the actual importance of the
rule. Consider the case in which we have just two rules:
R1 = ((≤ 20, {A,B,C}, {X,Y }), {α1, α2}) and R2 = ((≤
20, {A,C}, {Y }), {α3, α4, α5, α6}). Here A, B, C, X , and Y
represents five different Android APIs, and α1, ..., α6 represent
six Android apps. Since the condition checked in the two rules
is the same and R2 is “contained” in R1 (i.e., APIs in R2’s
At are contained in R1’s At, and the ones in R2’s Af are
contained in R1’s Af), every R2 instance is also a R1 instance.
Therefore, by counting frequencies individually, R2 does not
appear in only four apps, but in six apps (α1...α6). Also, it
is sufficient to look for instances of R1 in order to detect
issues of the type R2, since R1 is a generalization of R2. In
other words, R2 is likely an instance of R1 customized for a
specific app. For this reason, we use the following procedure
to compute the confidence level of each rule.

4

TABLE I: Types of API compatibility issues and suboptimal usages detected by ACRYL. An issue identified with a detection
rule R = ((C,At, Af), S) is classified into one of the supported types according to the reported heuristic; V indicates the API
level subject of the condition C and MinSDK the minimum SDK version supported by the app under analysis.

Type of Issue Detection Heuristic

Backward
Bug APIs Af are used without a compatibility check and any API in Af does not exist in MinSDK version.

Improvement APIs Af are used without a compatibility check, all APIs in Af exist in MinSDK, V < MinSDK, and any API in
Af do not exist before V .

Forward
Bug APIs At are used without a compatibility check and any API in At does not exist in the latest SDK version.
Bad Smell APIs At are used without a compatibility check and any API in At is deprecated in the latest SDK version.
Improvement APIs At are used without a compatibility check but no API in At is deprecated or removed in the latest SDK version.

Wrong Precond. Checked APIs Af and At are used with a compatibility check, but the checked version is not the expected one V .

First, we formally define the relationship “is generaliza-
tion of” as (≺): R1 = ((C1, At1, Af1), S1) ≺ R2 =
((C2, At2, Af2), S2) if C1 = C2, At1 ⊆ At2, Af1 ⊆ Af2,
and |S1| ≥ |S2|. If R1 appears in less apps than R2 (i.e.,
|S1| < |S2|), the relationship does not hold. Indeed, even if
more generic, R1 may have been introduced by mistake in
some apps, and the fact that the specific rule is more popular
may indicate that it is the correct way of implementing the
CAU. Also, we consider rules with empty sets for At or Af
as special cases; the generalization relationship (≺) for rules
containing empty sets holds only if the empty set is present in
both the rules in the same branch.

For example, the rule R1 = ((≤ 20, ∅, {Z}), S1) is not a
generalization of the rule R2 = ((≤ 20, {A,B}, {Z, Y }), S2).

The fact that a rule does not include any alternative API can
have a completely different semantic. Consider the CAUs (≤ 15,
View.setBackgroundDrawable, View.setBackground) and
(≤ 15, ∅, View.setBackground): while the first expresses the
alternative usage of two APIs, the second might have been
introduced because some apps decided to use an image as
a background just for specific versions. Starting from this
definition, we create a Directed Acyclic Graph G = (R,E),
where R is the set of rules (i.e., nodes), and E is the set of ≺
relationships existing between rules (i.e., edges). For each pair
of rules < R1, R2 > ∈ R, we create an edge going from R1

to R2 if R1 ≺ R2. We consider all the connected sub-graphs
ρ ∈ G. For each ρ, we keep the root of the sub-graph (i.e.,
the most generic rule) and we compute its confidence level as
|
⋃

(CAUi,Si)∈(ρ) Si|, i.e., the cardinality of the set composed
by the union of the apps in which the generic rule and its
“child rules” appear. These are the detection rules ACRYL uses
to identify compatibility issues. The more specific rules are
removed, since (i) contained in the more general root rules, and
(ii) unlikely to represent general compatibility issue patterns.

Figure 2 shows an example of ρ. The black boxes con-
tain the number of apps in which each rule is contained
(in this example, we assume that each rule is contained
in a disjointed set of apps). In this case, we keep only
the rule (SDK_INT <= 20, {Resource.getDrawable()},
{Resource.getDrawable(Theme)}) and we compute its con-
fidence as the total number of apps in which it and its child
rules appear (i.e., 11) — see the orange boxes in Figure 2. We
use the confidence level as a proxy of the reliability of the

if(SDK_INT <= 20)

Resources.getDrawable()
———
Resources.getDrawable(Theme)

4
11

Fragment.getResources()
Resources.getDrawable()
———
Fragment.getActivity()
ContextThemeWrapper.getTheme()
Fragment.getResources()
Resources.getDrawable(Theme)

1
1

Resources.getDrawable()
———
View.getContext()
Context.getTheme()
Resources.getDrawable(Theme)

1
1

View.getResources()
Resources.getDrawable()
———
View.getResources()
Resources.getDrawable(Theme)

2
2

Context.getResources()
Resources.getDrawable()
———
Context.getResources()
Resources.getDrawable(Theme)

2
3 Context.getResources()

Resources.getDrawable()
———
Context.getResources()
Context.getTheme()
Resources.getDrawable(Theme)

1
1

Fig. 2: Directed Acyclic Graph mapping the ≺ relationship.

rule. We conjecture that rules that appear in a sufficiently high
number of apps are “reliable”, i.e., they represent CAUs that
should be implemented and they are not introduced by mistake.
Therefore, we use a threshold, Mincl, to distinguish reliable
rules from unreliable ones. We only keep into account rules
with confidence level higher than Mincl. The tuning of the
threshold Mincl is presented in Section V.

D. Step 4: Detecting APIs Usage Issues

We use the set of rules inferred from Step 2 and refined
in Step 3 to detect potential API compatibility issues and
suboptimal usages. Given an app P to check and the set
of rules R, ACRYL analyzes P ’s bytecode and, for each
Ri ∈ R, looks for usages of the Ri’s At (or Af) in P that
are not “checked” by Ri’s C in P , i.e., the APIs used in P
do not have the compatibility check expected for those APIs
accordingly to Ri. This, combined with the analysis of the
android:minSdkVersion declared by P in the manifest file
(see Section II), allows ACRYL to detect the types of API
issues and suboptimal usages described in Table I. Table I
assigns a name to each of the potential issues detected by
ACRYL, and it shows the heuristic we use to detect it. When
reading the table, it is important to remember that, since all the
checking conditions in the detection rules have been normalized
in the form if(SDK_INT <= V, At are the APIs that should be
used when using V or older SDK versions (i.e., SDK_INT <= V

is true), while the Af should be used for newer versions. We
use the lifetime model extracted by CID to determine when an
API was introduced and if/when it was removed. We use such
information to determine the severity of a warning (among
bug, bad smell, and improvement). We briefly describe each

5

type of potential issue we detect in the following. To ease the
description, we assume that the issue has been detected with
a rule having a high support and featuring the condition C =
(≤ 20, API1, API2), thus having At=API1 and Af=API2.

Backward compatibility bug. An app invokes API2 without a
compatibility check, and API2 does not exist in the MinSDK
version (e.g., 18) declared in its manifest file. The C conditional
check should be added to invoke API2 only if the app is running
in the versions in which API2 is available. This is a severe bug
resulting in the crash of the app.

Backward compatibility improvement. An app invokes API2
without a compatibility check. API2 exists in the MinSDK
version declared by the app, thus does not resulting in a crash.
Indeed, the rule refers to a check needed for apps running in
versions older than MinSDK (i.e., MinSDK > 20 in our
running example), in which API2 does not exist. Addressing
this warning by implementing C could help the developer to
improve the backward compatibility of the app (i.e., the part
of the code using this API will become compatible with older,
currently unsupported, versions).

Forward compatibility bug. An app invokes API1 without a
compatibility check and API1 does not exists in the latest SDK
version. The C conditional check should be added to invoke
API1 only if the app is running in the (older) versions in which
API1 is available; API2 should be invoked otherwise. This bug
results in the crashing of the app.

Forward compatibility smell. An app invokes API1 without a
compatibility check and API1 exists in the latest SDK version
but is deprecated. Thus, API1 could be deleted in the future
resulting in a bug. The developer can implement C invoking
API2 on the newer SDK versions, thus avoiding future bugs.

Forward compatibility improvement. An app invokes API1
without a compatibility check and API1 exists in the latest
SDK version and is not deprecated. However, many apps
use C when accessing API1. This might be an indication
that a better API (API2) has been introduced in newer SDK
versions to accomplish the tasks previously performed using
API1. For example, one of the rules ACRYL identified
is (≤ 11, {Bitmap.getRowBytes(), Bitmap.getHeight()},
{Bitmap.getByteCount()}). The getByteCount API has
been introduced in version 12, and returns the total number of
bytes composing a Bitmap. This task was previously performed
by using the getRowBytes and the getHeight APIs that have
not been deleted or deprecated (since they are still used to
accomplish specific tasks). Implementing C in this case allows
to take advantage of improvements (e.g., better performance)
ensured by the latest introduced APIs.

Wrong precondition checked. An app invokes API1 or API2 and
it implements a compatibility check using a version X different
than the one expected in C (20 in our running example). For
example, if ACRYL finds a CAU (≤ 21, API1, API2) in a given
app it detects a wrong precondition check, since it learned from
other apps that the “right check” to do is SDK_INT <= 20.

App1

App2

App3

Appn

Android
releases

1 6

2008 2017max 10 days

Fig. 3: Diagram used to explain the study design.

IV. STUDY DESIGN

The goal of the study is to compare two data-driven
approaches for the detection of Android API compatibility
issues. We focus on CID, as state-of-the-art approach and
representative of a API-side learning approach, and ACRYL,
as client-side learning approach. The focus is on the ability of
the experimented techniques to identify issues that are actually
fixed by software developers. The context consists of 19,291
snapshots of 1,170 open source Android apps.

The verifiability of our study is guaranteed through a publicly
available replication package [32] including the data used in
the study as well as the ACRYL tool.

A. Research Questions

The study addresses the research question What is the
most effective data-driven approach to detect Android API
compatibility issues? ACRYL and CID are compared on the
basis of compatibility issues they detect in real apps and that
are fixed by software developers over the apps’ change history.

B. Context Selection

The first step to answer our research question is the selection
of the subject mobile apps. We mined F-Droid [33], a catalogue
of free and open-source Android apps, to identify all the apps
hosted on GitHub. This resulted in the collection of 1,170
URLs of git repositories. As explained later, we also used
these apps to tune the Mincl threshold aimed at excluding
unreliable detection rules learned by ACRYL.

C. Data Collection and Analysis

We adopt the study design depicted in Figure 3.
The arrows labeled with “Appi” represent the change history

of the apps considered in our study, with the vertical lines
representing the snapshots from the versioning system. Note
that the history of the apps is not aligned, meaning that not all
the apps exist in the same time period (e.g., App1 was created
after App3 and before App2). Given an app, the general idea
behind our experimental design is to run ACRYL on each of
its snapshots to detect compatibility issues, and then check
whether the issues reported by ACRYL have been fixed by
the developers in subsequent snapshots of the app. In other
words, if ACRYL detects an API compatibility issue in the
snapshot S1 and this issue is fixed in S4 by implementing a
conditional API usage, we can assume that the compatibility

6

issue detected by ACRYL was relevant. In this way, we can
compute the percentage of API compatibility issues detected by
ACRYL that have been fixed by the developers over the change
history of the analyzed apps. This percentage will represent
an underestimation of the relevance of the issues detected by
ACRYL. While it is safe to assume that a fixed issue is relevant
for developers, we cannot assume that a non-fixed issue is not
relevant, since developers may simply be not aware of it.

Since ACRYL analyzes the code of existing apps to learn
detection rules, one point to discuss is the set of apps from
which the rules are learned before ACRYL can be run on a
given app to analyze. Let us assume that the app under analysis
is App1 in Figure 3. In particular, we want to run ACRYL on
its first and sixth snapshot. For the first snapshot created on
date d1, we extract from each app the latest snapshot existing
before d1, and we use these snapshots to learn the rules. Then,
ACRYL is run on the App1’s first snapshot with the set of
rules just learned. In Figure 3 we report in red, inside the
grey bar, the snapshots from which the rules are learned. The
same applies for the analysis of the sixth snapshot. In this way,
ACRYL is not using “data from the future”: We are simulating
a real usage scenario in which the rules are learned on a set
of open source apps at date di, and this set of rules is used to
detect API compatibility issues in a date dj > di.

By analyzing the complete history of an app, we know the
issues detected by ACRYL in each of the analyzed snapshots.
Thus, we can verify whether an issue detected in snapshot
S1 has been fixed in a subsequent snapshot, allowing us to
compute the fixing rate of the issues detected by ACRYL. We
measure the fixing rate as |issuesfix|

|issuesdet|
, where issuesfix is the

number of fixed issues and issuesdet is the number of issues
detected by ACRYL. A few clarifications are needed for what
concerns the computation of the fixing rate. First, if the same
API compatibility issue is detected in snapshots S1, S2, and
S3 of the same app and it is not detected anymore in snapshot
S4, we count it as one detected issue that has been fixed (not
as three, since the issue is the same). Second, assuming again
that a previously detected issue is not identified anymore in
S4, we do not consider it as fixed if the method affecting
it was deleted (i.e., ACRYL does not identify the issue not
because it has been fixed, but because the problematic method
was deleted). In this case, we do not count the issue in the
issuesfix set nor in the issuesdet set. Indeed, we do not want
to assume that the issue has been fixed/not fixed, since we do
not have any evidence for that. We prefer to ignore this issue
from the computation of the fixing rate to avoid introducing
noise in our results. Finally, it could happen that the detection
rule used in snapshots S1, S2, and S3 by ACRYL to identify
the issue is not part of the ACRYL’s ruleset when it is run
on S4. This is a consequence of the experimental design in
which, as previously explained, the set of rules used to detect
issues in each snapshot may change. In this case, ACRYL will
not identify the issue in S4 not because it has been fixed, but
because is not considered an issue anymore in its ruleset. For
this reason, we do not consider the issue as fixed. Summarizing,

a detected issue is considered fixed only if the developers added
a check in the code to handle the problematic API(s) or they
removed the API(s) that caused the problem in the first place.

The last thing to clarify for the adopted design is that,
for a given app under analysis, we did not run ACRYL on
all its snapshots. This was done because the process of re-
building the ruleset for each snapshot would have been too
expensive in terms of computational resources. Indeed, to build
the ACRYL’s ruleset to analyze a single snapshot S1 we need,
for each of the apps existing before S1, to (i) build, using
Gradle, its latest snapshot preceding S1 and (ii) analyze its
bytecode for extracting the rules. One simple option would
have been to select one snapshot every n days (e.g., every
10 days). However, this would have likely resulted in the
missing of several compatibility issues that developers may have
introduced and fixed within the n-day interval. Our conjecture
is that compatibility issues are more likely to appear close to
the release of new versions of the Android APIs. Thus, we
decided to sample the snapshots to analyze by taking this into
consideration. We defined a set of dates dates={d1, d2, . . . , dk}
from which we extract the snapshots on which ACRYL is run
for each app under analysis. This means, for example, that if
an Appi is the one from which we want to detect compatibility
issues, we select its snapshot closer to date d1 (and preceding
it) and we analyze it with the procedure previously explained;
then, we move to the snapshot closer to d2, and so on. This set
of dates is defined in such a way that more dates are selected
when approaching the dates in which new versions of the
Android APIs have been released. The output of this process
is depicted in the bottom part of Figure 3, in which the white
squares represent four Android API releases and the red dots
are the dates selected for the analysis. The selection of the
dates was performed using Algorithm 1, taking as input the
dates of the Android Releases (AR). We defined as maximum
interval between two subsequent dates di and di+1 10 days.
This means that when we are far from an Android release, still
we want to analyze at least one snapshot every 10 days.

Algorithm 1 Selection of the analysis dates
1: procedure EXTRACTDATES(AR)
2: cur ← ARfirst
3: dates← list()
4: while cur ≤ ARlast do
5: append cur to dates
6: prev ← maxi(ARi : ARi ≤ cur)
7: next← mini(ARi : ARi ≥ cur)
8: gap← next− prev
9: delay ← min(10, gap

10)

10: exp← min(cur−prev,next−cur)
0.5×gap

11: cur ← cur +max(round(delayexp), 1)

12: return dates

We start from the date of the first stable Android release
(2008/10/22) — cur in Algorithm 1, line 2 — and from an
empty set dates (line 3). Then, the while loop starting at line
4 is in charge of adding dates to the selected set until reaching
the date of the last stable Android release, 2017/12/04 at the
date of the experiment. In particular, the cur date is added to
the set (line 5), and then the closer android release dates before

7

and after it are stored in prev and next, respectively (lines
6-7); gap is then used to store the days between prev and next
(line 8) while delay indicates the maximum number of days
that can be skipped between prev and next during the analysis
(line 9). It is always in the interval (0, 10], and it depends on
the gap between the two releases: the larger the gap, the larger
the maximum number of days that can be skipped when cur
is far from the release dates. Then, we increment cur, the
current date, by a value exponentially depending on distance
between cur and the nearest release date (i.e., prev or next)
— lines 10-11. The closer cur to one of the release dates, the
lower exp, which is always in the interval [0, 1]. In total, we
considered 1,594 days, from 2008/10/22 to 2017/12/04, and
we skipped 1,736 days.

By applying this process, we had to discard 502 of the 1,170
apps. This was done to (i) git repositories not existing anymore,
(ii) apps not using Gradle, and (iii) apps having all builds failing
using Gradle. Thus, RQ1 is answered by considering 668 apps
for a total of 19,291 built snapshots. The first buildable snapshot
for the analyzed apps is from 2014/02/18. We release the list
of apps/snapshots we considered [32].

To compare ACRYL with CID, we run this latter on the
same set of apps’ snapshots used to evaluate ACRYL. We run
both tools on a machine with 56 cores and 396Gb of RAM.
Since the code analysis performed by CID is computationally
expensive, we run the tools for a maximum of 1 hour on each
snapshot. If such time exceeded, we killed the process and we
ignore that snapshot. We did this because, in a first attempt,
we run CID without any time limit, but, on some snapshots, it
run for hours, requiring a restarting of the machine. ACRYL
adopts a much lighter code analysis, requiring about 5 minutes,
on average, for the analysis of a single snapshot, excluding the
extraction of the rules and the building time of the apps.

We answer RQ1 by reporting the fixing rate of the issues
detected by ACRYL and by CID. The comparison is done
only on the set of apps on which we managed to successfully
run both tools. We also discuss the fixing rate of the issues
detected by ACRYL when considering all the apps on which
it was run (thus not only those on which also CID worked).

Also, since the goal of our study is to compare different
data-driven approaches, we analyze the complementarity of
ACRYL and CID when detecting Android API compatibility
issues. In particular, we compute the following overlap metrics:

fixedACRYL∩CiD =
|fixedACRYL ∩ fixedCiD|
|fixedACRYL ∪ fixedCiD|

%

fixedACRYL\CiD =
|fixedACRYL \ fixedCiD|
|fixedACRYL ∪ fixedCiD|

%

fixedCiD\ACRYL =
|fixedCiD \ fixedACRYL|
|fixedACRYL ∪ fixedCiD|

%

where fixedACRYL and fixedCiD represent the sets of com-
patibility issues fixed by developers and detected by ACRYL
and CID, respectively. fixedACRYL∩CiD measures the overlap
between the set of fixed issues detected by both techniques,
and fixedACRYL\CiD (fixedCiD\ACRYL) measures the fixed
issues detected by ACRYL (CID) only and missed by CID

10

100

490

24
8

3

di

sa
pp

ea
re

d
ru

le
s

(lo
g)

1 2 3 4
confidence level

(a)

5

10

19

7
5 4

ke

pt
 ru

le
s

5 6 7 8
confidence level

(b)

15

20

500

1000

9 10 11 13 19 24 33

1

7

1 2 1 1 1

Fig. 4: Results of the tuning.

(ACRYL). The latter metric provides an indication on how an
API compatibility detection strategy contributes to enriching
the set of relevant issues identified by another approach.

Finally, we qualitatively discuss examples of relevant com-
patibility issues identified by one approach and missed by the
other, to further investigate the possibility of combining the
two experimented techniques.

1) Tuning of the Mincl threshold: We use the extracted
data to firstly tune the Mincl threshold, and then to answer
RQ1. In particular, we consider the first part of the analyzed
history, from 2014/02/18 to 2016/06/04 (18 months before
the latest analyzed day 2017/12/04) for the tuning of Mincl.
Here we analyzed the reliability of the rules at different Mincl
levels. A rule is considered to be “reliable” if once it becomes
part of the rule set (i.e., once it is learned from one or more
apps), it does not disappear in the future (i.e., the apps from
which it has been learned, continue to implement it). Indeed,
if a learned rule is removed from the app from which it was
learned, this might indicate that the rule was implemented “by
mistake”. We tune Mincl to identify its minimum value that
allows to discard unreliable rules.

V. RESULTS

Among the 11,863 snapshots considered for computing the
results, we had to forcefully interrupt CID 1,971 times, while
we had to interrupt ACRYL 134 times (also in this case, due
to the 1-hour maximum running time we set for each tool on
each snapshot). We did not have any data about CID for 98 of
the 585 apps considered in our study, while we had no results
from ACRYL for 69 apps. Specifically, CID did not complete
its analysis on 29 of the apps that ACRYL was able to analyze,
while the opposite never occurred. We excluded the 69 apps
that could not be analyzed with CID from the comparison.

A. Tuning of the Confidence Level

Figure 4 (a) shows, for each confidence level, the total
number of disappeared rules in logarithmic scale.

No rules with confidence level higher than four disappeared
in our dataset. There are, however, a few cases in which rules
with confidence 3 or 4 disappear (11 in total). For example,
the rule ((≤ 10, {}, {Window.setFlags}), S) was first mined
on 2014/06/19 from a single app; then, it started to spread
and it reached its peak on 2015/02/23, when it appeared in
4 apps (i.e., |S| = 4). However, after 2015/04/29 it started
to be removed in such apps and it appeared the last time on
2016/05/24, when only one app implemented it. We found that

8

Window.setFlags was introduced since the first version of
the Android APIs; however, some of the flags that can be set
(i.e., numeric constants used as parameters) were introduced
later. Therefore, the check implemented by the apps referred
to the parameter values used in those specific apps rather then
to the usage of the API itself. Having such a rule would have
increased the number of false-positives detected by ACRYL,
since it would have raised a warning in all the cases in which
the API was called before version 10.

Given the achieved results, we set Mincl = 5. We report in
Figure 4 (b) the distribution by confidence level of the rules
that did not disappear detected in the tuning time period.

B. Comparison between ACRYL and CID

We report in Table II the comparison between ACRYL
and CID, also showing the percentage of fixes for different
categories of warnings. ACRYL achieves a slightly higher
precision. Analyzing the results by category of warning, CID
achieves a higher precision for Forward warnings compared to
ACRYL, while the opposite happens for Backward warnings.
It is worth noting that there is a single app (Ultrasonic) for
which ACRYL reports many warnings (2,614, 834 of which
are fixed). These warnings were fixed by updating the minSDK

of the app. Excluding such an outlier, the overall precision
of ACRYL drops to 7.0% (15.1% for Forward warnings and
5.9% for Backward warnings).

We report in Table III the detailed results for all the categories
of warnings that ACRYL can detect. We do this both for (i) the
apps used for the comparison and (ii) all the apps that ACRYL
could analyze. Most of the warnings found by ACRYL belong
to the macro-category “Backward”. As previously mentioned,
most of such warnings (specifically, “Backward Bug” warnings)
come from a single app. However, even excluding this outlier,
the warnings from the category “Backward Bug” are among
the most frequently fixed ones (28%), while the backward
“improvements” rarely get fixed (only 5% of times). ACRYL
did not report any “Forward Bug” warning. This is probably
due to the fact that Android APIs are seldom completely
removed. Besides, Android provides compatibility layers that
allow developers to avoid forward compatibility problems even
without modifying the code, at the price of a performance
overhead. We found, instead, that the developers fixed all the
“Forward Bad Smell” warnings reported by ACRYL, which
shows that this type of issues are worthwhile to detect.

We report in Figure 5 the distribution of the fixing time
(in days) for both the approaches (we excluded the previously
mentioned outlier for ACRYL). This indicates the “survivabil-
ity” of the compatibility issue in the app. While the distribution
shows a very similar trend (most of the warnings get fixed
in less than 100 days), the warnings reported by ACRYL get
fixed quicker (85.5 days vs 134.8 days, on average).

Finally, Table IV shows the overlap metrics of the fixed
compatibility issues detected by the tools. Table IV clearly
highlights that the two techniques are highly complementary.
Indeed, 54.2% of the fixed issues are only detected by CID,
45.3% by ACRYL, and only 0.5% are in common.

0.000

0.002

0.004

0.006

0 50 100 150 200 250 300 350 400 450 500

 ACRyL CiD

Fig. 5: Distribution of days needed to fix warnings.

C. Qualitative analysis

An example of warning detected by both the approaches con-
cerns the Kandroid (GH: andresth/Kandroid) app. ACRYL
reported a “Backward Improvement” warning when analyzing
the snapshot from 2017/03/02. Then, on 2017/04/25, the
developers reduced the minSDK (from 21 to 17) to improve the
compatibility of their app; however, doing so, the warning
became a critical bug, since the API they used was not
supported by Android versions before 21. This was quickly
fixed on 2017/05/01 [34]. CID was able to catch the same
problem, but only when it became a critical bug (i.e., when
developers reduced the minSDK value).

An example of warning detected only by CID, instead, is
from Dandelion (GH: gsantner/dandelion). Such a warning
belongs to the category “Forward”. Even if the line of code
concerned was present since the first commit of the app, CID
raised the warning for the first time on 2016/06/07, probably
because the API was still supported until then. The bug was
fixed on 2016/06/09 [35]. ACRYL did not learn at all a rule
for this API, since only a few apps implemented a CAU for it.

Finally, an example of warning detected only by ACRYL
concerns the Rick App (GH: no-go/RickApp). ACRYL
reported a Backward Bug on 2016/12/11. Such a warning
was present since the first release of the app and it was fixed
on 2016/12/17 [36]. This bug involved Android versions below
4.4.4 and the author explicitly says in the README that the
app was not tested for such Android versions.

D. Discussion

Both API-side-learning (represented by CID) and client-side-
learning (represented by ACRYL) approaches have their own
advantages and disadvantages. The main advantages of using
API-side approaches are the following:

A1: They identify more “Forward” warnings. This happens
because they know which APIs disappear. Since Android APIs
rarely disappear, it is more difficult to learn these rules client-
side. This is why, for this category of warnings, client-side
approaches are less effective.

A2: They are easier to keep up-to-date. Keeping up-to-date
an API-side approach requires to run a tool every time a new
version of the APIs is released. On the other hand, client-side
approaches require a continuous monitoring of a relatively
large set of apps. This operation is more resource-intensive.

9

TABLE II: Comparison between ACRYL and CID
Backward Forward Total

#Fixed #Warnings Fix Rate #Fixed #Warnings Fix Rate #Fixed #Warnings Fix Rate

ACRYL 905 3,816 23.7% 25 166 15.1% 930 3,982 23.4%
CID 898 4,704 19.1% 201 1,222 16.4% 1,099 5,926 19.0%

TABLE III: Performance of ACRYL
AppsCiD ∩ AppsACRYL AppsACRYL

#Fixed #Warnings Fix Rate #Fixed #Warnings Fix Rate

Backward
Bug 848 2,664 32% 848 2,681 32%
Improvement 57 1,152 5% 59 1,220 5%
Total 905 3,816 23.7% 907 3,901 23.2%

Forward

Bug 0 0 // 0 0 //
Bad Smell 5 5 100% 5 5 100%
Improvement 20 161 12% 22 196 11%
Total 25 166 15.1% 27 201 13.4%

Wrong Precond. Checked 0 0 // 0 0 //

Severe warnings 848 2,664 32% 848 2,681 32%
Non-severe warnings 82 1,318 6% 86 1,421 6%

TABLE IV: Overlap between ACRYL and CID
Only by CID Only by ACRYL By CID and ACRYL

Backward 887 (49.6%) 890 (49.8%) 11 (0.6%)
Forward 201 (91.4%) 19 (8.6%) 0 (0.0%)

Total 1,088 (54.2%) 909 (45.3%) 11 (0.5%)

Client-side approaches offer several advantages as well:
C1: They provide fixing suggestions. Learning from big

code-bases, client-side approaches allow to suggest a fix for a
given compatibility issue.

C2: They support API sequences. While API-side ap-
proaches detect compatibility issues for a single API call at a
time, client-side approaches can detect issues in API sequences.

In summary, there is no clear advantage in using only one
approach over the other. This is particularly evident for the
timeliness with which the approaches can theoretically detect
issues: while client-side approaches can detect issues that may
become bugs (as shown in the qualitative analysis), they need
to learn a rule for that and, therefore, many apps need to
implement such a rule. On the other hand, API-side approaches
can potentially learn a rule as soon as a new API version
is released. What is evident from our results is the high
complementarity of the two techniques, which points to the
possibility of combining the two learning approaches in future.

VI. THREATS TO VALIDITY

Construct validity: Identification of fixed API compatibility
issues. We assume that a compatibility issue identified in an
app’s snapshot Si by ACRYL (CID) and not detected anymore
by the same tool in a subsequent snapshot has been intentionally
fixed by developers. It may happen that developers stop use an
API causing the compatibility issue not due to this latter, but
just because this API is not needed anymore in the app’s code.
Despite this, we applied strict pre-/post-conditions to at least
limit the false positive fixing instances (see Section IV). For
example, we do not consider an issue as fixed if the method
affecting it was deleted in a subsequent snapshot.

Construct validity: Comparison with CID. To make the
comparison between the two tools fair we (i) used the original
CID implementation as provided by the tool’s authors, and (ii)
only compared the compatibility issues identified by the two
tools on the set of apps on which both tools correctly worked.

Internal validity: Calibration of the ACRYL’s parameter.
We performed the calibration on snapshots belonging to a time
interval not used in our study. The time needed to fix an issue
reported in Figure 5 can contain random errors, because we
observe only some snapshots of the apps. For example, if an
issue is introduced on date X and fixed on date X+20 but we
only keep into account snapshot on dates X +10 and X +20,
the time needed to fix is underestimated (10 days instead of
20). The opposite could have occured as well.

External validity: Generalizability. Our study is performed
on a set of 11,863 snapshots from 585 apps. The main issue is
therefore related to the fact that all used apps are open source,
and might not be representative of commercial apps.

VII. CONCLUSIONS

Android fragmentation forces developers to support many
versions of the OS to increase their potential market share.
However, the evolution of Android APIs can make such a task
harder, because it increases the effort in testing and the risks
of introducing bugs only reproducible in some versions.

We compared in a large empirical study two different types
of data-driven approaches, API-side (represented by CID, the
state of the art) and client-side (represented by ACRYL, our
new tool), both aimed at detecting compatibility issues early.

The results show that the two strategies are complementary.
The comparison shows no clear winner as they both have their
own advantages and disadvantages. For example, while client-
side approaches allow to suggest fixing strategies, API-side
approaches are easier to keep up-to-date.

Future work should focus on the definition of a hybrid
approach combining both techniques.

10

REFERENCES

[1] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “API change and fault proneness: A
threat to the success of Android apps,” in Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE. ACM,
2013, pp. 477–487.

[2] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the Android ecosystem,” in Proceedings of the IEEE
International Conference on Software Maintenance, ser. ICSM. IEEE
Computer Society, 2013, pp. 70–79.

[3] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk, “How do API changes trigger stack overflow discussions? a
study on the Android SDK,” in Proceedings of the 22Nd International
Conference on Program Comprehension, ser. ICPC. ACM, 2014, pp.
83–94.

[4] G. Bavota, M. Linares-Vásquez, C. E. Bernal-Cárdenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of API change- and fault-
proneness on the user ratings of Android apps,” IEEE Transactions on
Software Engineering, vol. 41, no. 4, pp. 384–407, 2015.

[5] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan, “Understanding
reuse in the Android market,” in Proceedings of the 20th IEEE
International Conference on Program Comprehension, ser. ICPC, 2012,
pp. 113–122.

[6] R. Minelli and M. Lanza, “Software analytics for mobile applications–
insights & lessons learned,” in Proceedings of the 17th European
Conference on Software Maintenance and Reengineering, ser. CSMR,
2013, pp. 144–153.

[7] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Revisiting Android reuse studies in the context of code
obfuscation and library usages,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR. ACM, 2014,
pp. 242–251.

[8] I. J. Mojica, B. Adams, M. Nagappan, S. Dienst, T. Berger, and A. E.
Hassan, “A large-scale empirical study on software reuse in mobile apps,”
IEEE Software, vol. 31, no. 2, pp. 78–86, 2014.

[9] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia,
“Understanding android fragmentation with topic analysis of vendor-
specific bugs,” in Proceedings of the 19th Working Conference on Reverse
Engineering, ser. WCRE, 2012, pp. 83–92.

[10] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of
fragmentation: Security hazards in Android device driver customizations,”
in Proceedings of the IEEE Symposium on Security and Privacy, ser. SP.
IEEE Computer Society, 2014, pp. 409–423.

[11] L. Wei, Y. Liu, and S. C. Cheung, “Taming Android fragmentation:
Characterizing and detecting compatibility issues for Android apps,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE, 2016, pp. 226–237.

[12] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in
mobile app development,” in Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser.
ESEM, 2013, pp. 15–24.

[13] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
for Android: Are we there yet?” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE.
IEEE Computer Society, 2015, pp. 429–440.

[14] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk, “Continuous,
evolutionary and large-scale: A new perspective for automated mobile
app testing,” in Proceedings of the IEEE International Conference on
Software Maintenance and Evolution, ser. ICSME, 2017, pp. 399–410.

[15] P. Mutchler, Y. Safaei, A. Doupé, and J. Mitchell, “Target fragmentation
in Android apps,” in Proceedings of the IEEE Security and Privacy
Workshops, ser. SPW, 2016, pp. 204–213.

[16] D. Wu, X. Liu, J. Xu, D. Lo, and D. Gao, “Measuring the declared
SDK versions and their consistency with API calls in Android apps,”
in Proceedings of the International Conference on Wireless Algorithms,
Systems, and Applications. Springer International Publishing, 2017, pp.
678–690.

[17] T. Luo, J. Wu, M. Yang, S. Zhao, Y. Wu, and Y. Wang, “MAD-API:
Detection, correction and explanation of API misuses in distributed
android applications,” in Proceedings of the 7th International Conference
on Artificial Intelligence and Mobile Services, ser. AIMS. Springer
International Publishing, 2018, pp. 123–140.

[18] H. W. L. Li, Tegawendé F. Bissyandé and J. Klein, “CiD: Automating
the detection of API-related compatibility issues in Android apps,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ser. ISSTA, 2018, pp. 153–163.

[19] Google. <uses-sdk>. https://developer.android.com/guide/topics/manifest/
uses-sdk-element.

[20] ——. Build.VERSION_CODES. https://developer.android.com/reference/
android/os/Build.VERSION_CODES.

[21] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in Proceedings of the
13th IEEE/ACM Working Conference on Mining Software Repositories,
ser. MSR, 2016, pp. 464–467.

[22] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A Sys-
tematic Evaluation of Static API-Misuse Detectors,” IEEE Transactions
on Software Engineering, 2018.

[23] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation?: The case of a Smalltalk ecosystem,” in Proceedings
of the 20th ACM SIGSOFT International Symposium on the Foundations
of Software Engineering, ser. FSE. ACM, 2012, pp. 56:1–56:11.

[24] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate APIs with replacement messages? a large-scale analysis on
java systems,” in Proceedings of the 23rd IEEE International Conference
on Software Analysis, Evolution, and Reengineering, ser. SANER, vol. 1,
2016, pp. 360–369.

[25] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to
deprecation of 25,357 clients of 4+1 popular java APIs,” in Proceedings
of the IEEE International Conference on Software Maintenance and
Evolution, ser. ICSME, 2016, pp. 400–410.

[26] J. Zhou and R. J. Walker, “API deprecation: A retrospective analysis
and detection method for code examples on the web,” in Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE. ACM, 2016, pp. 266–277.

[27] L. Li, J. Gao, T. F. Bissyandé, L. Ma, X. Xia, and J. Klein, “Characterising
deprecated Android APIs,” in Proceedings of the 15th International
Conference on Mining Software Repositories, ser. MSR, 2018, pp. 254–
264.

[28] L. Li, T. F. Bissyandé, Y. L. Traon, and J. Klein, “Accessing inaccessible
Android APIs: An empirical study,” in Proceedings of the IEEE
International Conference on Software Maintenance and Evolution, ser.
ICSME, 2016, pp. 411–422.

[29] D. He, L. Li, L. Wang, H. Zheng, G. Li, and J. Xue, “Understanding
and detecting evolution-induced compatibility issues in Android apps,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ser. ASE. ACM, 2018, pp. 167–177.

[30] Dex2jar. http://code.google.com/p/dex2jar.
[31] Wala. http://wala.sourceforge.net/.
[32] S. Scalabrino, G. Bavota, M. Linares-Vásquez, M. Lanza, and R. Oliveto.

Replication package. https://dibt.unimol.it/report/acryl-msr/.
[33] F-droid. https://www.f-droid.org/.
[34] Kandroid, commit 0b0d0. https://git.io/fh8uX.
[35] Dandelion, commit af007. https://git.io/fh8uP.
[36] Rick app, commit 05efd. https://git.io/fh8u6.

11

