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Abstract—The SZZ algorithm for identifying bug-inducing
changes has been widely used to evaluate defect prediction
techniques and to empirically investigate when, how, and by
whom bugs are introduced. Over the years, researchers have pro-
posed several heuristics to improve the SZZ accuracy, providing
various implementations of SZZ. However, fairly evaluating those
implementations on a reliable oracle is an open problem: SZZ
evaluations usually rely on (i) the manual analysis of the SZZ
output to classify the identified bug-inducing commits as true or
false positives; or (ii) a golden set linking bug-fixing and bug-
inducing commits. In both cases, these manual evaluations are
performed by researchers with limited knowledge of the studied
subject systems. Ideally, there should be a golden set created by
the original developers of the studied systems.

We propose a methodology to build a “developer-informed”
oracle for the evaluation of SZZ variants. We use Natural Lan-
guage Processing (NLP) to identify bug-fixing commits in which
developers explicitly reference the commit(s) that introduced a
fixed bug. This was followed by a manual filtering step aimed at
ensuring the quality and accuracy of the oracle. Once built, we
used the oracle to evaluate several variants of the SZZ algorithm
in terms of their accuracy. Our evaluation helped us to distill a
set of lessons learned to further improve the SZZ algorithm.

Index Terms—SZZ, Defect Prediction, Empirical Study

I. INTRODUCTION

The SZZ algorithm, proposed by Śliwerski, Zimmermann,
and Zeller [1] at MSR 2005, identifies, given a bug-fixing
commit CBF , the commits that likely introduced the bug fixed
in CBF . These commits are termed “bug-inducing” commits.
In essence, given CBF as input, SZZ identifies the last change
(commit) to each source code line changed in CBF (i.e.,
changed to fix the bug). This is done by relying on the
annotation/blame feature of versioning systems. The identified
commits are considered as the ones that later on triggered the
bug-fixing commit CBF .

SZZ has been widely adopted to (i) design and evaluate
defect prediction techniques [2]–[6], and to (ii) run empirical
studies aimed at investigating under which circumstances bugs
are introduced [7]–[10]. The relevance of the SZZ algorithm
was recognized a decade later with a MIP (Most Influential
Paper award) presented at the 12th Working Conference on
Mining Software Repositories (MSR 2015).

Several researchers have proposed variants of the original
algorithm, with the goal of boosting its accuracy [11]–[16].

For example, one issue with the basic SZZ implementation
is that it considers changes to code comments and whitespaces
like any other change.

This means that if a comment is modified in CBF , the latest
change to that comment is mistakenly considered as a bug-
inducing commit. An improvement by Kim et al. [11] was
therefore to ignore changes to code comments and blank lines
as candidate bug-inducing commits.

Despite the major advances made on the accuracy of SZZ,
Alencar da Costa et al. [14] highlighted the major difficulties
in fairly evaluating and comparing the SZZ variants proposed
in the literature. They observed that the studies presenting
and evaluating SZZ variants mostly rely on manual analysis
of a small sample of SZZ results [1], [11]–[13], with the
goal of evaluating its accuracy. Such an evaluation is usually
performed by the researchers who—not being the original
developers of the studied systems—do not always have the
knowledge needed to correctly identify the bug introducing
commit. Also, due to the high cost of such a manual analysis,
it is usually performed on a small sample of the identified bug-
inducing commits. Other researchers built instead a ground
truth to evaluate the performance of the SZZ algorithm [16].
However, also in these cases, the ground truth is produced
by the researchers. Alencar da Costa et al. [14] called for
evaluations performed with “domain experts (e.g., develop-
ers or testers)” reporting however that “such an analysis is
impractical” since “the experts would need to verify a large
sample of bug-introducing changes, which is difficult to scale
up to the size of modern defect datasets” [14].

We present a methodology to build a “developer-informed”
oracle for the evaluation of SZZ implementations. To explain
its idea, let us take as example commit a8a97bd from the
apache/thrift GitHub project, accompanied by a com-
mit message saying: “THRIFT-4513: fix bug in comparator
introduced by e58f75d”. The developer fixing the bug is
explicitly documenting the commit that introduced such a
bug. Based on this observation, we defined a number of strict
NLP-based heuristics to automatically identify notes in bug-
fixing commits in which developers explicitly reference the
commit(s) that introduced the fixed bug. We applied these
heuristics to a total of 19,603,736 mined through GH Archive
[39], which archives all public events on GitHub.

Our goal with the above described process is not to be ex-
haustive, i.e., we do not want to identify all bug-fixing commits
in which developers indicated the bug-inducing commit(s), but
rather to obtain a high-quality dataset of commits that were
certainly of the bug-inducing kind.



Approach name Reference Based on Used by Oracle type # Projects # Bug Fixes

B-SZZ Śliwerski et al. [1] [3], [4], [17]–[24] // // //
AG-SZZ Kim et al. [11] B-SZZ [2], [8], [25]–[31] Manually defined (researchers) 2 301
DJ-SZZ Williams and Spacco [12] AG-SZZ [6], [7], [32]–[37] Manually defined (researchers) 1 25
L-SZZ & R-SZZ Davies et al. [13] AG-SZZ [14] Manually defined (researchers) 3 174
MA-SZZ da Costa et al. [14] AG-SZZ [6], [9], [10], [15], [16], [38] Automatically computed metrics 10 2,637
RA-SZZ Neto et al. [15] MA-SZZ [5], [6], [15] Manually defined (researchers) 10 365
RA-SZZ* Neto et al. [16] RA-SZZ None Manually defined (researchers) 10 365

TABLE I: Variants of the SZZ algorithm. For each one, we specify (i) the algorithm on which it is based, (ii) references of
works using it, (iii) the oracle used in the evaluation (how it was built, number of projects and bug fixes considered).

We mined the time period between March 2011 and April
2020, obtaining 3,585 commits. To further increase the in-
trinsic quality of the dataset, we manually validated the 3,585
commits, to (i) verify if, from the commit message, it was clear
that the developer was documenting the bug-inducing commit;
and (ii) taking note of any issue referenced in the commit
message (e.g., issue THRIFT-4513 in the previous example).
Information from the issue tracker is exploited by some of the
SZZ implementations and we wanted our dataset to include it.

As output of this process, we obtained a dataset of 1,930
validated bug-fixing commits in which developers documented
the commit(s) that introduced the bug, with 212 also including
information about the fixed issue(s). To the best of our knowl-
edge, our work is the first presenting a dataset for the SZZ
evaluation built by using information about the bug-inducing
commit(s) explicitly reported by the bug fixer.

We tested nine variants of SZZ on our dataset. Besides
reporting their precision and recall, we analyzed their com-
plementarity and focused on the set of bug-fixes where all
SZZ variants fail. A qualitative analysis of those cases allowed
to distill lessons learned useful to further improve the SZZ
algorithm in the future. Summarizing, our contributions are:

1) A methodology to build a “developer-informed” oracle
for the evaluation of SZZ implementations, which does
not require major manual efforts as compared to the
classical manual identification of bug-inducing commits.

2) A first, easily extensible dataset built using our method-
ology and featuring 1,930 validated bug-fixing commits.

3) An empirical study comparing the effectiveness of sev-
eral SZZ implementations.

4) A comprehensive replication package featuring (i) the
dataset, and (ii) the implemented SZZ variants [40].

II. BACKGROUND AND RELATED WORK

We start by presenting several variants of the SZZ algorithm
[1] proposed in the literature over the years. Then, we discuss
how those variants have been used in SE research community.

A. SZZ and its variants

Table I presents the SZZ variants proposed in the literature.
We report for each of them its name and reference, the
approach it builds upon (i.e., the starting point on which
the authors provide improvements), some references to works
that used it, and information about the oracle used for the
evaluation. Specifically, we report how the oracle was built
and the number of projects/bug reports considered.

All the approaches that aim at identifying bug-inducing
commits (BICs) rely on two elements: (i) the revision history
of the software project, and (ii) an issue tracking system
(optional, needed only by some SZZ implementations).

The original SZZ algorithm was proposed by Śliwerski et al.
[1] (we refer to it as B-SZZ, following the notation provided
by da Costa et al. [14]). B-SZZ takes as input a bug report
from an issue tracking system, and tries to find the commit that
fixes the bug. To do this, B-SZZ uses a two-level confidence
level: syntactic (possible references to the bug ID in the issue
tracker) and semantic (e.g., the bug description is contained
in the commit message). B-SZZ relies on the CVS diff
command to detect the lines changed in the fix commit and
the annotate command to find the commits in which the
lines were modified. Using this procedure, B-SZZ determines
the earlier change at the location of the fix. Potential bug-
inducing commits performed after the bug was reported are
always ignored.

Kim et al. [11] noticed that B-SZZ has limitations mostly
related to formatting/cosmetic changes (e.g., moving a bracket
to the next line). Such changes can deceive B-SZZ: B-SZZ
(i) can report as BIC a revision which only changed the code
formatting, and (ii) it can consider as part of a bug-fix a
formatting change unrelated to the actual fix. They introduce
a variant (AG-SZZ) in which they used an annotation graph,
a data structure associating the modified lines with the con-
taining function/method. AG-SZZ also ignores the cosmetic
parts of the bug-fixes to provide more precise results.

Williams and Spacco [12] improved the AG-SZZ algorithm
in two ways: first, they use a line-number mapping approach
[41] instead of the annotation graph introduced by Kim et al.
[11]; second, they use DiffJ [42], a Java syntax-aware diff
tool, which allows their approach (which we call DJ-SZZ) to
exclude non-executable changes (e.g., import statements).

Davies et al. [13] propose two variations on the criterion
used to select the BIC among the candidates: L-SZZ uses
the largest candidate, while R-SZZ uses the latest one. These
improvements were done on top of the AG-SZZ algorithm.

MA-SZZ, introduced by da Costa et al. [14], excludes from
the candidate BICs all the meta-changes, i.e., commits that do
not change the source code. This includes (i) branch changes,
which are copy operations from one branch to another, (ii)
merge changes, which consist in applying the changes per-
formed in a branch to another one, and (iii) property changes,
which only modify file properties (e.g., permissions).



To further reduce the false positives, two new variants
were introduced by Neto et al., RA-SZZ [15] and RA-SZZ*

[16]. Both exclude from the BIC candidates the refactoring
operations, i.e., changes that should not modify the behavior
of the program. Both approaches use state-of-the-art tools:
RA-SZZ uses RefDiff [43], while RA-SZZ* uses Refactoring
Miner [44], with the second one being more effective [16].

The original SZZ was not empirically evaluated [1]. Instead,
all its variants, except MA-SZZ, were manually evaluated by
their authors. One of them, RA-SZZ* [16], used an external
dataset, i.e., Defect4J [45]. MA-SZZ was evaluated using
automated metrics, namely earliest bug appearance, future
impact of a change, and realism of bug introduction [14].

In Table II we list the open-source implementations of SZZ.

Tool name Approach Public repository

SZZ Unleashed [33] ∼DJ-SZZ [12] https://github.com/wogscpar/SZZUnleashed
OpenSZZ [46] ∼B-SZZ [1] https://github.com/clowee/OpenSZZ
PYDRILLER [47] ∼AG-SZZ [1] https://github.com/ishepard/pydriller

TABLE II: Open-source tools implementing SZZ.

SZZ Unleashed [33] partially implements DJ-SZZ: it uses
line-number mapping [12] but it does not rely on DiffJ [42]
for computing diffs, also working on non-Java files. It does not
take into account meta-changes [14] and refactorings [16].

OpenSZZ [46] implements the basic version of the ap-
proach, B-SZZ. Since it is based on the git blame command,
it implicitly uses the annotated graph [11].

PYDRILLER [47], a general purpose tool for analyzing
git repositories, also implements B-SZZ. It uses a simple
heuristic for ignoring C- and Python-style comment lines, as
proposed by Kim et al. [11]. We do not report in Table II a
comprehensive list of all the SZZ implementations that can be
found on GitHub, but only the ones presented in papers.

B. SZZ in Software Engineering Research

The original SZZ algorithm and its variations were used in
a plethora of studies. We discuss some examples, while for
a complete list we refer to the extensive literature review by
Rodrı́guez-Pérez et al. [37], featuring 187 papers.

SZZ has been used to run several empirical investigations
having different goals [7]–[10], [17], [18], [20], [22]–[25],
[27]–[31], [35], [37]. For example, Aman et al. [9] studied
the role of local variable names in fault-introducing commits
and they used SZZ to retrieve such commits, while Palomba
et al. [17] focused on the impact of code smells, and used SZZ
to determine whether an artifact was smelly when a fault was
introduced. Many studies also leverage SZZ to evaluate defect
prediction approaches [2]–[6], [19], [21], [26], [34], [38].

Looking at Table I it is worth noting that, despite its clear
limitations [11], many studies, even recent ones, still rely
on B-SZZ [3], [4], [17]–[24] (the approaches that use git
implicitly use the annotation graph defined by Kim et al.
[11]). Improvements are only slowly adopted in the literature,
possibly due to the fact that some of them are not released
as tools and that the two standalone tools providing a public
SZZ implementation were released only recently [33], [46].

The studies most similar to ours are the one by da Costa
et al. [14] and the one by Rodrı́guez-Pérez et al. [36]. Both
report a comparison of different SZZ variants. Da Costa et al.
[14] defined and used a set of metrics for evaluating SZZ
implementations without relying on a manually defined oracle.
However, they specify that, ideally, domain experts should
be involved in the construction of the dataset [14], which
motivated our study. Rodrı́guez-Pérez et al. [37] introduced
a model for distinguishing bugs caused by modifications to
the source code (the ones that SZZ algorithms can detect) and
the ones that are introduced due to problems with external
dependencies. They also used the model to define a manually
curated dataset on which they evaluated SZZ variants. Their
dataset is created by researchers and not domain experts. In
our study, instead, we rely on the explicit information provided
by domain experts in their commit messages.

III. BUILDING A DEVELOPER-INFORMED DATASET OF
BUG-INDUCING COMMITS

We present a methodology to build a dataset of bug-inducing
commits by exploiting information provided by developers
when fixing bugs. Our methodology reduces the manual effort
required for building such a dataset and more important, does
not assume technical knowledge of the involved source code
on the researchers’ side.

The proposed methodology involves two main steps: (i)
automatic mining from open-source repositories of bug-fixing
commits in which developers explicitly indicate the commit(s)
that introduced the fixed bug, and (ii) a manual filtering aimed
at improving the dataset quality by removing ambiguous com-
mit messages that do not give confidence in the information
provided by the developer. In the following, we detail these
two steps. The whole process is depicted in Fig. 1.

A. Mining Bug-fixing and Bug-inducing Commits

There are two main approaches proposed in the literature
for selecting bug-fixing commits. The first one relies on the
linking between commits and issues [48]: issues labeled with
“bug”, “defect”, etc. are mined from the issue tracking system,
storing their issue ID (e.g., THRIFT-4513). Then, commits
referencing the issue ID are mined from the versioning system
and identified as bug-fixing commit. While such a heuristic is
fairly precise, it has two important drawbacks that make it
unsuitable for our work. First, the link to the issue tracking
system must be known and a specific crawler for each different
type of issue tracker (e.g., Jira, Bugzilla, GitHub, etc.) must
be built.

Second, projects can use a customized set of labels to indi-
cate bug-related issues. Manually extracting this information
for a large set of repositories is expensive. The basic idea
behind this first phase is to use the commit messages to iden-
tify bug-fixing commits: we automatically analyze bug-fixing
commit messages searching for those explicitly referencing
bug-inducing commits.

https://github.com/wogscpar/SZZUnleashed
https://github.com/clowee/OpenSZZ
https://github.com/ishepard/pydriller
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Fig. 1: Process used for building the dataset.

As a preliminary step, we mined GH ARCHIVE [39] which
provides, on a regular basis, a snapshot of public events
generated on GitHub in the form of JSON files.

We mined the time period going from March 1st 2011 to
April 30th 2020, extracting 19,603,736 commits performed in
the context of push events: such events gather the commits
done by a developer on a repository before performing the
push action. Considering the goal of building an oracle for SZZ
algorithms, we are not interested in any specific programming
language. We performed three steps to select a candidate set
of commits to manually analyze in the second phase: (i) we
selected a first candidate set of bug-fixing commits, (ii) we
used syntax-aware heuristics to refine such a set, and (iii) we
removed duplicates.

1) Word-Based Bug-Fixing Selection: To identify bug-
fixing commits, we first apply a lightweight regular expression
on all the commits we gathered, as done in previous work [49],
[50]. We mark as potential bug-fixes all commits accompanied
by a message including at least a fix-related word1 and a bug-
related word2. We exclude the messages that include the word
merge to ignore merge commits. Note that we do not need
such a heuristic to be 100% precise, since two additional and
more precise steps will be performed on the identified set
of candidate fixing commits to exclude false positives (i.e.,
a NLP-based step and a manual analysis).

2) Syntax-Aware Filtering: We needed to select from the
set of candidate bug-fixing commits only the ones in which
developers likely documented the bug-inducing commit(s). We
used the syntax-aware heuristics described below to do this.
The first author defined such heuristics through a trial-and-
error procedure, taking a 1-month time period of events on GH
Archive to test and refine different versions of the heuristics,
manually inspecting the achieved results after each run. The
final version has been consolidated with the feedback of two
additional authors.

As a preliminary step, we used the doc.sents function
of the SPACY3 Python module for NLP to extract the set Sc

of sentences composing each commit message c.
For each sentence si ∈ Sc, we used SPACY to build its

word dependency tree ti, i.e., a tree containing the syntactic
relationships between the words composing the sentence.
Fig. 2 provides an example of ti generated for the sentence
“fixes a search bug introduced by 2508e12”.

1 fix or solve 2 bug, issue, problem, error, or misfeature 3 https://spacy.io/

fixes

bug

search 2508e12a

by

introduced

Fig. 2: Example of word dependency tree built by SPACY.

By navigating the word dependency tree, we can infer that
the verb “fix” refers to the noun “bug”, and that the verb
“introduced” is linked to commit id 2508e12 through the “by”
apposition.

H1: Exclude Commits Without Reference and Reverts.
We split each si ∈ Sc into words and we select all its commit
hashes H(si) using a regular expression4. We ignore all the
si for which H(si) is empty (i.e., which do not mention any
commit hash). Similarly, we filter out all the si that either
(i) start with a commit hash, or (ii) include the verb “revert”
referring to any hj ∈ H(si). We keep all the remaining si. We
exclude the commits that do not contain any valid sentence
as for this heuristic. We use the H(si) extracted with this
heuristic also for the following heuristics.

H2: Coarsely Filter Explicit Introducing References. If
one of the ancestors of hj is the verb “introduce” (in any
declension), as it happens in Fig. 2, we consider this as a
strong indication of the fact that the developer is indicating
hj as (one of) the bug-inducing commit(s). In this case, we
check if hj also includes at least one of the fix-related words1

and one of the bug-related words2 as one of its ancestors or
children. At least one of the two words (i.e., the one indicating
the fixing activity or the one referring to a bug) must be an
ancestor. We do this to avoid erroneously selecting sentences
such as “Improving feature introduced in 2508e12 and fixed a
bug”, in which both the fix-related and the bug-related word
are children of hj .

For example, the hj in Fig. 2 meets this constraint since it
has among its ancestors both fix and bug. We also exclude
the cases in which the words attempt or test (again, in
different declensions) appear as ancestors of hj . We do this
to exclude false positives observed while experimenting with
earlier versions of this heuristic.
4 [0-9a-f]{6,40}



For example, the sentence “Remove attempt to fix error
introduced in 2f780609” belongs to a commit that aims at
reverting previous changes. Similarly, the sentence “Add tests
for the fix of the bug introduced in 2f780609” most likely
belongs to the message of a test-introduction commit.

H3: Finely Filter Non-Explicit Introducing References.
If hj does not contain the verb “introduce” as one of its
ancestors, we apply a finer filtering heuristic: both a word
indicating a fixing activity and a word indicating a bug must
appear as one of hj’s ancestors. Also, we define a list of
stop-words that must not appear either in the hj’s ancestor
as well as in the dependencies (i.e., ancestors and children)
of the “fixing activity” word. Such a stop-word list, derived
through a trial-and-error procedure, includes eight additional
words (was, been, seem, solved, fixed, try, trie (to capture tries
and tried), and by), besides attempt and test also used in H2.
This allows, for example, to exclude sentences such as “This
definitely fixes the bug I tried to fix in commit 26f3fe2”, meets
all selection criteria for H3 but it is a false positive.

3) Duplicate Deletion: We saved the list of commits includ-
ing at least one sentence si meeting H1 and either H2 or H3 in
a MySQL database. Since we analyzed a large set of projects,
it was frequent that some commits were duplicated due to the
fact that different forks of a given project are available. As
a final step, we removed such duplicates, keeping only the
commit of the main project repository.

Out of the 19,603,736 parsed commits, the automated
filtering selected 3,585 commits. Our goal with the above
described process is not to be exhaustive, i.e., we do not
want to identify all bug-fixing commits in which developers
indicated the bug-inducing commit(s), but rather to obtain a
high-quality dataset of commits that were certainly of the
bug-inducing kind. The quality of the dataset is then further
increased during the subsequent step of manual analysis.

B. Manual Analysis

Four of the authors (from now on, evaluators) manually
inspected the 3,585 commits produced by the previous step.
The evaluators have different backgrounds (graduate student,
faculty member, junior and a senior researcher with two years
of industrial experience). The goal of the manual validation
was to verify (i) whether the commit was an actual bug-fix,
and (ii) if it included in the commit message a non-ambiguous
sentence clearly indicating the commit(s) in which the fixed
bug was introduced. For both steps the evaluators mostly
relied on the commit message and, if available, on possible
references to the issue tracker. Those references could be issue
IDs or links that the evaluators inspected to (i) ensure that the
fixed issue was a bug, and (ii) store for each commit the links
to the mentioned issues and, for each issue, its opening date.

The latter is an information that may be required by an SZZ
implementation (e.g., SZZ Unleashed [33] and OpenSZZ [46]
require the link to the issue) to exclude from the candidate list
of bug-inducing commits those performed after the opening of
the fixed issue.

Indeed, if the fixed bug has been already reported at date
di, a commit performed on date dj > di cannot be responsible
for its introduction. Since the commits to inspect come from
a variety of software systems, they rely on different issue
trackers. When an explicit link was not available but an issue
was mentioned in the commit message (e.g., see the commit
message shown in the introduction), the evaluators searched
for the project’s issue tracker, looking on the GitHub reposi-
tory for documentation pointing to it (in case the project did
not use the GitHub issue tracker itself). If no information was
found, an additional Google search was performed, looking
for the project website or directly searching for the issue ID
mentioned in the commit message.

The manual validation was supported by a web-based appli-
cation we developed that assigns to each evaluator the candi-
date commits to review, showing for each of them its commit
message and a clickable link to the commit GITHUB page.
Using a form, the evaluator indicated whether the commit
was relevant for the oracle (i.e., an actual bug-fix documenting
the bug-inducing commit) or not, and listing mentioned issues
together with their opening date. Each commit was assigned
by the web application to two different evaluators, for a total
of 7,170 evaluations. To be more conservative and to have
higher confidence in our oracle, we decided to not resolve
conflicts (i.e., cases in which one evaluator marked the commit
as relevant and the other as irrelevant): we excluded from our
oracle all commits with at least one “irrelevant” flag.

C. The Obtained SZZ Oracles

Out of the 3,585 manually validated commits, 1,930
(55.6%) passed our manual filtering, of which 212 include
references to a valid issue (i.e., an issue labeled as a bug that
can be found online). This indicates that SZZ implementations
that rely on information from issue trackers can only be run on
a minority of bug-fixing commits. Indeed, the 1,930 instances
we report have been manually checked as true positive bug-
fixes, and only 212 of these (11.0%) mention the fixed issue.
The dataset is available in our replication package [40].

These 1,930 commits and their related bug-inducing com-
mits impact files written in many different languages. All the
implementations of the SZZ algorithm (except for B-SZZ)
perform some language-specific parsing to ignore changes
performed to code comments.

In our study (Section IV) we experimented several versions
of the SZZ including those requiring the parsing of comments.
We implemented support for the top-8 programming languages
present in our oracle (i.e., the ones responsible for more
code commits): C, C++, C#, Java, JavaScript, Ruby, PHP,
and Python. This led to the creation of the dataset we use
in our experimentation, only including bug-fixing/inducing
commits impacting files written in one of the eight program-
ming languages we support. This dataset is also available in
our replication package [40]. Table III summarizes the main
characteristics of the overall dataset and of the language-
filtered one.



Overall Language-filtered
Language #Repos #Commits #Issues #Repos #Commits #Issues

C 350 433 52 297 366 41
Python 271 304 36 249 279 35
C++ 198 241 31 138 162 20
JS 169 180 26 127 135 18
Java 88 101 14 72 80 10
PHP 63 71 6 56 64 5
Ruby 43 47 5 36 37 4
C# 25 32 3 20 27 1
Others 498 588 48 0 0 0

Total 1,625 1,930 212 951 1,115 129

TABLE III: Features of the language-filtered/overall datasets.

It is worth noting that a repository or even a commit can
involve several programming languages: for this reason, the
total may be lower than the sum of the per-language values
(i.e., a repository can be counted in two or more languages).

Besides sharing the datasets as JSON files, we also share
the cloned repositories from which the bug-fixing commits
have been extracted. This enables the replication of our study
and the use of the datasets for the assessment of future SZZ
improvements.

IV. STUDY DESIGN

The goal of this study is to experiment several implementa-
tions of the SZZ algorithm on the previously defined language-
filtered dataset (context of our study). The perspective is
that of researchers interested in assessing the effectiveness
of the state-of-the-art implementations and identify possible
improvements that can be implemented to further improve the
accuracy of the SZZ algorithm. To achieve such a goal, we
aim to answer the following research question:

How do different variants of SZZ perform in identifying
bug-inducing changes?

A. Data Collection

We focused our experiment on several variants of the SZZ
algorithm. Specifically, we (i) re-implemented all the main ap-
proaches available in the literature (presented in Section II) in
a new tool, and (ii) adapted three existing tools (PYDRILLER
[47], SZZ Unleashed [33], and OpenSZZ [46]) to work with
our dataset. We provide in our replication package [40] both
our tool and the adapted versions of the other tools, including
detailed instructions on how to run them.

We report the details about all the implementations we
compare in Table IV and, for each of them, we explicitly
mention (i) how it filters the lines changed in the fix (e.g., it
removes cosmetic changes), (ii) which methodology it uses for
identifying the preliminary set of bug-inducing commits (e.g.,
annotation graph), (iii) how it filters such a preliminary set
(e.g., it removes meta-changes), and (iv) if it uses a heuristic
for selecting a single bug-inducing commit and, if so, which
one (e.g., most recent commit).

We also explicitly mention any difference between our im-
plementations and the approaches as described in the original
papers presenting them.

It is worth noting that we intentionally made all our re-
implementations optionally independent from the issue-tracker
systems: we did this because most of the instances of our
dataset do not provide links to the bug-report (∼88%). This
is the reason why we did not implement the “Issue-date” as a
BIC filtering technique by default, despite it is reported in the
respective papers (e.g., for B-SZZ). However, we experiment
all techniques with and without such a filtering applied.

As for the tools, instead, we did not modify their implemen-
tation of the BIC-finding procedures: e.g., we did not remove
the filtering by issue date from SZZ Unleashed. On the other
hand, we implemented wrappers for such tools that allowed
us to run them with our dataset. SZZ Unleashed depends on
a specific issue-tracker system (i.e., Jira) for filtering commits
done after the bug-report was opened. We made it independent
from it by adapting our datasets to the input it expects (i.e.,
Jira issues in JSON format). It is worth noting that, despite the
complexity of such files, SZZ Unleashed only uses the issue
opening date in its implementation. For this reason, we only
provide such field and we set the others to null.

Note that some of the original implementations listed in
Table IV can identify bug-fixing commits. In our study, we
did not want to test such a feature: we test a scenario in which
the implementations already have the bug-fixing commits for
which they should detect the bug-inducing commit(s).

To evaluate the previously described implementations, we
defined two datasets extracted from the language-filtered
dataset: (i) the oracleall dataset, featuring 1,115 bug-fixes,
which includes both the ones with and without issue informa-
tion, and (ii) the oracleissues dataset, featuring 129 instances,
which includes only instances with issue information. Also,
we defined two additional datasets, oracleJ

all (80 instances)
and oracleJ

issues (10 instances), obtained by considering only
Java-related commits from the oracleall and oracleissues ,
respectively. We did this because two implementations, i.e.,
RA-SZZ*5 and OpenSZZ, only work on Java files.

We ran all the implementations on all the datasets on
which they can be executed (i.e., we did not run RA-SZZ*

and OpenSZZ on the datasets including non-Java files). It is
worth noting that SZZ Unleashed requires the issue date in
order to work, so it would not be possible to run it on the
oracleall dataset. To avoid this problem, we simulated the
best-case-scenario for such commits: we pretended that an
issue about the bug was created few seconds after the last bug-
inducing commit was done. Consider the bug-fixing commit
BF without issue information and its set of bug-inducing
commits BIC; we assumed that the issue mentioned in BF
had maxb∈BIC (date(b)) + δ as opening date, where δ is a
small time interval (we used 60 seconds).

B. Data Analysis
Given the defined oracle and the set of bug-inducing com-

mits detected by the experimented implementations, we eval-
uated its accuracy by using two widely-adopted Information
Retrieval (IR) metrics, namely recall and precision [52].

5 It relies on Refactoring Miner [51] which only works on Java files.



TABLE IV: Characteristics of the SZZ implementations we compare in our study. We mark with a “�” our re-implementations.

Acronym Fix Line Filtering BIC Identification Method BIC Filtering BIC Selection Differences w.r.t. the original paper

B-SZZ // Annotation Graph [11] // // We use git blame instead of the CVS annotate,
i.e., we implicitly use an annotation graph [11]. We
do not filter BICs based on the issue creation date.�

AG-SZZ Cosmetic changes [11] Annotation Graph [11] // // No differences.�

MA-SZZ Cosmetic changes [11] Annotation Graph [11] Meta-Changes [14] // No differences.�

L-SZZ Cosmetic Changes [11] Annotation Graph [11] Meta-Changes [14] Largest [13] We filter meta-changes [14].�

R-SZZ Cosmetic Changes [11] Annotation Graph [11] Meta-Changes [14] Latest [13] We filter meta-changes [14].�

RA-SZZ* Cosmetic Changes [11]
Refactorings [16]

Annotation Graph [11] Meta-Changes [14] // We use Refactoring Miner 2.0 [51].�

SZZ@PYD Cosmetic Changes [11] Annotation Graph [11] // // We implement a wrapper for PYDRILLER [47].

SZZ@UNL Cosmetic Changes [11] Line-number Mapping [12] Issue-date [1] // We implement a wrapper for SZZ Unleashed [33].

SZZ@OPN // Annotation Graph [11] // // We implement a wrapper for OpenSZZ [46].

We computed them using the following formulas:

recall =
|correct ∩ identified|

|correct|
precision =

|correct ∩ identified|
|identified|

where correct and identified represent the set of true positive
bug-inducing commits (those indicated by the developers in
the commit message) and the set of bug-inducing commits
detected by the experimented algorithm, respectively. As an
aggregate indicator of precision and recall, we report the F-
measure [52], defined as the harmonic mean of precision and
recall. Such metrics were also used in previous work for
evaluating SZZ variants (e.g., Neto et al. [16]).

Given the set of experimented SZZ variants/tools
SZZexp = {v1, v2, . . . vn}, we also analyze their
complementarity by computing the following metrics
for each vi [53]:

correctvi∩vj
=

|correctvi ∩ correctvj |
|correctvi ∪ correctvj |

correctvi\(SZZexp\vi) =
|correctvi \ correct(SZZexp\vi)|
|correctvi ∪ correct(SZZexp\vi |

where correctvi represents the set of correct bug-inducing
commits detected by vi and correct (SZZexp\vi) the correct
bug-inducing commits detected by all other techniques but vi.
correctvi∩vj measures the overlap between the set of correct
bug-inducing commits identified by two given implementa-
tions: we computed it between all the pairs of SZZ variants
and present the results using a heatmap. correctvi\(SZZ exp\vi),
instead, measures the correct bug-inducing commits identified
only by technique vi and missed by all others.

It is worth clarifying that, when we compute the overlap
metrics, we compare all the implementations among them on
the same dataset. This means, for example, that we do not
compute the overlap between a variant tested on oracleall and
another variant tested on oracleissues .

As a last step in our analysis, we compute the set of bug-
fixing commits for which none of the experimented techniques
was able to correctly identify the bug-inducing commit(s). We
qualitatively discuss these cases to understand their peculiari-
ties and point to future improvements of the SZZ algorithm.

V. RESULTS DISCUSSION

Table V reports the results achieved by the experimented
SZZ variants and tools.

TABLE V: Precision, recall, and F-measure calculated for all
SZZ algorithms. † Java only files.

Algorithm oracleall oracleissue

Recall Precision F1 Recall Precision F1
N

o
is

su
e

da
te

fil
te

r

B-SZZ 0.69 0.39 0.50 0.69 0.38 0.49
AG-SZZ 0.60 0.45 0.52 0.62 0.43 0.51
L-SZZ 0.45 0.52 0.48 0.43 0.49 0.46
R-SZZ 0.57 0.66 0.61 0.56 0.64 0.60
MA-SZZ 0.64 0.36 0.46 0.65 0.36 0.47
†RA-SZZ* 0.45 0.35 0.39 0.40 0.57 0.47
SZZ@PYD 0.67 0.39 0.49 0.68 0.39 0.50
SZZ@UNL 0.72 0.09 0.16 0.72 0.06 0.12
†SZZ@OPN 0.19 0.32 0.24 0.10 0.50 0.17

W
ith

da
te

fil
te

r

B-SZZ 0.69 0.42 0.53 0.69 0.39 0.50
AG-SZZ 0.60 0.49 0.54 0.62 0.44 0.52
L-SZZ 0.45 0.54 0.49 0.43 0.50 0.46
R-SZZ 0.57 0.73 0.64 0.56 0.67 0.61
MA-SZZ 0.64 0.39 0.48 0.65 0.37 0.47
†RA-SZZ* 0.45 0.43 0.44 0.40 0.57 0.47
SZZ@PYD 0.67 0.42 0.52 0.68 0.41 0.51
SZZ@UNL 0.72 0.09 0.16 0.72 0.06 0.12
†SZZ@OPN 0.19 0.33 0.24 0.10 0.50 0.17

The top part of the table shows the results when the issue
date filter has not been applied, while the bottom part relates
to the application of the date filter. With “issue date filter” we
refer to the process through which we remove from the list of
candidate bug-inducing commits returned by a given technique
all those performed after the issue documenting the bug has
been opened. Those are known to be false positives. For this
reason, such a filter is expected to not have any impact on
recall (since the discarded bug-inducing commits should all
be false positives) while increasing precision. The left part of
Table V shows the results achieved on oracleall, while the
right part focuses on oracleissue.

The first result to extrapolate from Table V is the general
trend concerning the performance of the SZZ implementations.

When not using the issue date filtering (top part), the
highest achieved F-Measure is 61% (R-SZZ). R-SZZ uses the
annotation graph, ignores cosmetic changes and meta-changes,
and only considers as bug-inducing commits the latest change
that impacted a line changed to fix the bug.



Such a combination of heuristics make the R-SZZ the
most precise on both oracles, achieving a 66% precision
on oracleall and 64% on oracleissue. With respect to re-
call/precision tradeoff, there is a price to pay in terms of
recall that, however, it is not dramatically worse compared
to the best approach in terms of recall: SZZ@UNL (SZZ
Unleashed). The latter achieves a 72% recall on both oracleall
and oracleissue datasets, with, however, a precision of 9% and
6%, respectively. We investigated the reasons behind such a
low precision, finding that it is mainly due to a set of outlier
bug-fixing commits for which SZZ@UNL identifies a high
number of (false positive) bug-inducing commits. For example,
three bug-fixing commits are responsible for 72 identified bug-
inducing commits, out of which only three are correct. We
analyzed the distribution of bug-inducing commits reported
by SZZ@UNL for the different bug-fixing commits. Cases
for which more than 20 bug-inducing commits are identified
for a single bug-fix can be considered outliers. By ignoring
those cases, the recall and precision of SZZ@UNL are 67%
and 18%, respectively on oracleall, and 67% and 17% on
oracleissue. By lowering the outlier threshold to 10 bug-
inducing, the precision grows in both datasets to 24%. We
believe that the low precision of SZZ@UNL may be due to
misbehavior of the tool in few isolated cases.

Two implementations (i.e., RA-SZZ* and SZZ@OPN) only
work with Java files. In this case, we compute their recall
and precision assuming by only considering the bug-fixing
commits impacting Java files. Both of them exhibit limited
recall and precision. While this is due in part to limitations of
the implementations, it is also worth noting that the number of
Java-related commits in our datasets is quite limited (i.e., 80 in
oracleall and only 10 in oracleissue). Thus, failing on a few of
those cases penalizes in terms of performance metrics. Still, we
found the low precision of RA-SZZ* surprising, considering
the expensive mechanism it uses to limit false positives (i.e.,
ignoring lines impacted by refactoring operations detected by
Refactoring Miner [51].

B-SZZ, the simplest SZZ version, exhibits a good recall of
69% on both datasets, making it the second-best algorithm
after SZZ@UNL. Nonetheless, B-SZZ pays in precision,
making it the fourth algorithm together with the PyDriller
implementation for oracleall and the fifth for oracleissue. The
similarity between B-SZZ and the PyDriller implementation
results in very similar performances.

AG-SZZ, L-SZZ, and MA-SZZ exhibit, as compared
to others, good performance for both recall and precision.
These algorithms provide a good balance between recall and
precision, as also shown by their F-Measure (∼50%).

The bottom of Table V shows the results achieved by the
same algorithms when using the issue data filter.

As expected, the recall remains equal to the previous
scenario in all cases, with marginal improvements in precision
(thanks to the removal of some false positives). While most
of the algorithms improve their precision by 1%-4%, two
algorithms obtain substantial improvements in the oracleall
dataset: RA-SZZ* (+8%) and R-SZZ (+7%).

This boosts the latter to a very good 73% precision on
oracleall, and 67% on oracleissue (+3%).

To summarize the achieved results: We found that R-
SZZ is the most precise variant on our datasets, with a
precision ∼70% when the issue date filter is applied. Thus,
we recommend it when precision is more important than recall
(e.g., when a set of bug-inducing commits must be mined for
qualitative analysis). SZZ@UNL ensures instead a high recall
at, however, a high precision cost. If the focus is on recall,
the current recommendation is to rely on B-SZZ, using, for
example, the implementation provided by PyDriller. Finally,
looking at Table V, it is clear that there are still margins
of improvement for the accuracy of the SZZ algorithm. We
discuss possible directions for future work in Section V-A.

Table VI shows the correctvi\(SZZ exp\vi) metric we com-
puted for each SZZ variant vi.

TABLE VI: Bug inducing commits correctly identified exclu-
sively by the vi algorithm. † Java only files.

Algorithm No date filter With date filter
oracleall oracleissue oracleall oracleissue

B-SZZ 0/804 0/94 0/804 0/94
AG-SZZ 0/804 0/94 0/804 0/94
L-SZZ 0/804 0/94 0/804 0/94
R-SZZ 0/804 0/94 0/804 0/94
MA-SZZ 0/804 0/94 0/804 0/94
†RA-SZZ* 0/56 0/7 0/56 0/7
SZZ@PYD 0/804 0/94 0/804 0/94
SZZ@UNL 20/804 (2.5%) 3/94 (3.2%) 20/804 (2.5%) 3/94 (2.2%)
†SZZ@OPN 0/56 0/7 0/56 0/7

This metric measures the correct bug-inducing commits
identified only by technique vi and missed by all the others.

Fig. 3a and Fig. 3b depicts the correctvi∩vj metric com-
puted between each pair of SZZ variants when not filtering
based on the issue date, while Fig. 4a and Fig. 4b show the
same metric when the issue filter has been applied. Given
the metric definition, the depicted heatmaps are symmetric
(i.e., correctvi∩vj = correctvj∩vi ). The only technique able
to identify bug-inducing commits missed by all others SZZ
implementations is SZZ@UNL (20 on oracleall and 3 on
oracleissue) – Table VI. This is not surprising considering the
high SZZ@UNL recall and the high number of bug-inducing
commits it returns for certain bug-fixes. It also explains why
none of the other implementations identifies bug-inducing
commits missed by all the others: Given 804 as cardinality
of the intersection of the true positives identified by all SZZ
techniques, SZZ@UNL correctly retrieves 800 of them.

Looking at the overlap metrics in Fig. 3 and Fig. 4, two
observations can be made. First, the overlap in the identified
true positives is substantial. Excluding SZZ@OPN, 21 of the
28 comparisons have an overlap in the identified true positives
≥70% and the lower values are still in the range 60-70%. The
low overlap values observed for SZZ@OPN are instead due
to the its low recall. Second, the complementarity between the
different SZZ variants is quite low, which indicates that there
is a set of bug-fixing commits for which all of the variants fail
in identifying the correct bug-inducing commit(s).
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Fig. 3: Overlap between SZZ variants when no issue date filter is applied.
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Fig. 4: Overlap between SZZ variants when the issue date filter is applied.

We manually analyzed those cases to derive possible future
improvements to the SZZ.

A. Improvements to SZZ

The manual analysis of 311 bug-fixing commits on which
all SZZ variants fail allowed us to identify recurring patterns
and distill three possible ways to improve the SZZ algorithm.

1) The buggy line is not always impacted in the bug-fix:
In some cases, fixing a bug introduced in line l may not result
in changes performed to l. An example in Java is the addition
of an if guard statement checking for null values before
accessing a variable.

In this case, while the bug has been introduced with the code
accessing the variable without checking whether it is null,
the bug-fixing commit does not impact such a line, it just
adds the needed if statement. An example from our dataset
is the bug-fixing commit from the thcrap repository [54] in
which line 289 is modified to fix a bug introduced in commit
b67116d, as pointed by the developer in the commit message.
However, the bug was introduced with changes performed on
line 290 [54]. Thus, running git blame on line 289 of the fix
commit will retrieve a wrong bug-inducing commit. Defining
approaches to identify the correct bug-inducing commit in
these cases is far from trivial.



However, by manually analyzing a large dataset of bug-
fixing commits, it should be possible to identify fixing patterns
with associated buggy lines. Such a dataset could be used to
train a model able, given a bug-fixing commit, to point to the
location of the bug.

2) SZZ is sensible to history rewritings: Bird et al. [55]
highlighted some of the peril of mining git repositories, among
which the possibility for developers to rewrite the change
history. This can be achieved through rebasing, for example:
using such a strategy can have an impact on mining the
change history [56], and, therefore, on the performance of
the SZZ algorithm. Besides rebasing, git allows to partially
rewrite history by reverting changes introduced in one or
more commits in the past. This action is often performed by
developers when a task they are working on leads to dead
end. Once run, the revert command results in new commits
in the change history that turn back the indicated changes.
Consequently, SZZ can improperly show one of these commits
as candidate bug-inducing.

For example, in the message of commit 5d8cee1 from
the xkb-switch project [57], the developer indicates that the
bug she is fixing has been introduced in commit 42abcc. By
performing a blame on the fix commit, git returns as a bug-
inducing commit 8b9cf29 [58], which is a revert commit. By
performing an additional blame step, the correct bug-inducing
commit pointed by the developer can be retrieved [59]. Future
SZZ variants should handle revert commits, and properly deal
with them when analyzing the change history.

3) Looking at the “big picture” in code changes: In
several bug-fixing commits we inspected, the implemented
changes included both added and modified/deleted lines. SZZ
implementations focus on the latter, since there is no way to
blame a newly added line. However, we found cases in which
the added lines were responsible for the bug-fixing, while
the modified/deleted ones were unrelated. There have been
a recent attempt to address this problem: Sahal and Tosun
[60] proposed an SZZ extension that considers past history
of all the lines in the block in which the added line appears.
However, the research in this aspect is still at the beginning.

An example is commit ca11949 from the snake repository
[61], in which two lines are added and two deleted to fix a
bug. The deleted lines, while being the target of SZZ, are
unrelated to the bug-fix, as clear from the commit message
pointing to commit 315a64b [62] as the one responsible
for the bug introduction. In the bug-inducing commit, the
developer refactored the code to simplify an if condition.
While refactoring the code, she introduced a bug (i.e., she
missed an else branch). The fixing adds the else branch to
the sequence of if/else if branches introduced in the bug-
inducing commit. In this case, by relying on static analysis,
it should be possible to link the added lines, representing the
else branch, to the set of if/else if statements preceding
it. While the added lines cannot be blamed, lines related to
them (e.g., acting on the same variable, being part of the same
“high-level construct” like in this case) could be blamed to
increase the chances of identifying the bug-inducing commit.

While this would help recall, it would penalize precision
without careful heuristics aimed at filtering out false positives.

VI. THREATS TO VALIDITY

Construct validity. During the manual validation, the eval-
uators mainly relied on the commit message and the linked
issue(s), when available, to confirm that a mined commit was
a bug-fixing commit. Misleading information in the commit
message could result in the introduction of false positive
instances in our dataset. However, all commits have been
checked by at least two evaluators and doubtful cases have
been excluded, privileging a conservative approach. To build
our dataset, we considered all the projects from GitHub,
without explicitly defining criteria to select only projects
that are invested in software quality. Our assumption is that
the fact that developers take care of documenting the bug-
introducing commit(s) is an indication that they care about
software quality. To ensure that the commits in our dataset
are from projects that take quality into account, we manually
analyzed 123 projects from our dataset, which allowed us to
cover a significant sample of commits (286 out of 1,115, with
95%±5% confidence level). For each of them, we checked
if they contained elements that indicate a certain degree of
attention to software quality, i.e., (i) unit test cases, (ii) code
reviews (through pull requests), (iii) and continuous integration
pipelines. We found that in 95% of the projects, developers (i)
wrote unit test cases, and (ii) conducted code reviews through
pull requests. Also, we found CI pipelines in 75% of the
projects.

Internal validity. There is a possible subjectiveness intro-
duced of the manual analysis, which has been mitigated with
multiple evaluators per bug-fix. Also, we reimplemented most
of the experimented SZZ approaches, thus possibly introduc-
ing variations as compared to what proposed by the original
authors. We followed the description of the approaches in
the original papers, documented in Table IV any difference
between our implementations and the original proposals, and
share our implementations [40]. Also, note that the differences
documented in Table IV always aim at improving the perfor-
mance of the SZZ variants and, thus, should not be detrimental
for their performance.

External validity. While it is true that we mined millions
of commits to build our dataset, we used very strict filtering
criteria that resulted in 1,930 instances for our oracle. Also,
the SZZ implementations have been experimented on a smaller
dataset of 1,115 instances that is, however, still larger than
those used in previous works. Finally, our dataset represents a
subset of the bug-fixes performed by developers. This is due
to our design choice, where we used strict selection criteria
when building our oracle to prefer quality over quantity. It
is possible that our dataset is biased towards a specific type
of bug-fixing commits: there might be an inherent difference
between the bug fixes for which developers document the bug-
inducing commit(s) (i.e., the only ones we considered) and
other bug fixes.



VII. CONCLUSION

When an algorithm like SZZ becomes so prominent in
software engineering research, it is more than just necessary to
explore ways to ameliorate its performance. Still, it is crucial
to create a platform that allows for a sound and fair comparison
of any new variant.

Our goal was to create such a platform, exemplified in a
publicly available and extensible oracle of multiple and docu-
mented datasets, together with open source re-implementations
of a considerable number of variants.

Moreover, as we used our oracle to compare the variants
and check our re-implementation validity, we came up with
several concrete improvements to the existing SZZ variants.

Given the pivotal role of SZZ for various research en-
deavors, for example, in the context of defect analysis and
prediction, and the whole field of MSR (mining software
repositories), we believe our work can set the stage for
numerous and, above all, comparable ameliorations of the
seminal SZZ algorithm.
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