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Search-based techniques have been successfully used to automate test case generation. Such approaches
allocate a fixed search budget to generate test cases aiming at maximizing code coverage. The search budget
plays a crucial role; due to the hugeness of the search space, the higher the assigned budget, the higher
the expected coverage. Code components have different structural properties that may affect the ability of
search-based techniques to achieve a high coverage level. Thus, allocating a fixed search budget for all the
components is not recommended and a component-specific search budget should be preferred. However,
deciding the budget to assign to a given component is not a trivial task.

In this paper we introduce BOT, an approach to adaptively allocate the search budget to the classes under
test. BOT requires information about the branch coverage that will be achieved on each class with a given
search budget. Therefore, we also introduce BRANCHOS, an approach that predicts coverage in a budget-aware
way. The results of our experiments show that (i) BRANCHOS can approximate the branch coverage in time
with a low error, and (ii) BOT can significantly increase the coverage achieved by a test generation tool and
the effectiveness of generated tests.

CCS Concepts: • Software and its engineering → Maintaining software; Search-based software engi-
neering.

Additional Key Words and Phrases: Budget Allocation, Test Case Generation, Search-Based Software Engi-
neering

ACM Reference Format:
Simone Scalabrino, Antonio Mastropaolo, Gabriele Bavota, and Rocco Oliveto. 2020. An Adaptive Search
Budget Allocation Approach for Search-Based Test Case Generation. ACM Trans. Softw. Eng. Methodol. 1, 1,
Article 1 (January 2020), 26 pages. https://doi.org/10.1145/3446199

1 INTRODUCTION
Automatic test case generation tools (TGTs) are designed to derive test cases for a given software
project, and can reduce the time allocated for unit testing. Many TGTs have been defined in
the literature [10, 13, 18, 19, 21, 27], most of them based on search-based techniques [11, 23, 24].
Randoop [21] and EvoSuite [10] are two well-known examples of such tools, based on random
search (Randoop) and genetic algorithms (EvoSuite). These tools take as input a set of components
(e.g., classes) to be tested and a search budget, namely the time that can be spent searching for a
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(near-)optimal solution that maximizes code coverage. The search budget plays a fundamental role
since automatic test case generation is a time-consuming activity due to the hugeness of the search
space. In general, the higher the assigned search budget, the higher the expected code coverage.
State-of-the-art tools allow to specify a global search budget, meaning the overall time that

the search-based approach will invest in the coverage of all targets (e.g., all the branches of the
classes under test). However, intuitively, some classes are easier to cover than others. For example,
a class implementing a Java parser is likely to exhibit a high code complexity, with branches dealing
with exceptional conditions that are unlikely to happen but that still need to be managed. The
automatic generation of test cases for such a class is clearly challenging, and could require a long
execution time before reaching a satisfactory coverage level. On the other hand, a simple Java bean
representing a data class and having little application logic is likely to require only a few seconds
in order to meet the coverage target. Thus, assuming the possibility to specify a local search budget
rather than a global one (i.e., assign a specific budget to each unit to test), the first class (i.e., the
parser) should probably be assigned with a higher search budget as compared to the second one
(i.e., the Java bean).

Such an intuition has been exploited by Campos et al. [5] when presenting the idea of Continuous
Test Generation (CTG), embedding automatic test case generation in the process of continuous
integration. CTG exploits historical data of the project under test to allocate a specific budget to
each of its classes. For example, if a class 𝐶 has been modified in a commit, then its search budget
should be higher. Also, information about the coverage achieved on 𝐶 in past runs of test case
generation is used to decide the search budget for a new version of 𝐶 . More in general, abstracting
from the CTG to the automatic generation of test cases, this problem can be referred to as Budget
Optimization Problem: given a set of classes and a global search budget, the aim is to divide the
budget to optimize the global coverage. While the approach by Campos et al. [5] is a clear step in
this direction, it can only be used when historical information is available. Indeed, there are many
cases in which projects do not have test suites or they only cover a small portion of the system:
Kochhar et al. [17] show that the majority of the open-source projects they analyzed have test
suites achieving less than 25% coverage.

Ferrer et al. [9] proposed a metric—namely Branch Coverage Expectation (BCE)—to assess how
difficult it is to generate test cases for a given class or method.

While the authors show that BCE correlates with branch coverage better than existing metrics,
its output cannot be directly used for predicting the coverage achieved by a test case generation tool
when run on a given component. Indeed, while BCE is a good proxy for the difficulty of testing the
code artifact 𝐶 , it does not take into account the search budget assigned to the test case generator
for testing 𝐶 .

In this paper, we introduce BOT, an approach tackling the Budget Optimization Problem. Given
a set of classes to test, BOT uses a search-based algorithm to intelligently divide the global budget
among the classes. BOT requires a budget-aware estimation of the coverage achieved on a given
class. For this reason, we introduce BRANCHOS, an approach built on top of BCE that predicts the
branch coverage that a search-based test case generation technique will achieve on a class given a
specified search budget. Specifically, we define a set of structural metrics that we use as predictors
of branch coverage “in time”1 and we use machine learning to train a regressor. We evaluate both
BRANCHOS and BOT on 10,349 Java classes. Our results indicate that (i) BRANCHOS is able
to predict branch coverage significantly better than the considered baselines, and (ii) BOT can
improve the project-level branch coverage and the effectiveness of test suites created by automatic

1We use “in time” to refer to the ability of the approach to predict the coverage reached by an automatic test case generation
tool on a unit under test in a given time budget.
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test case generation techniques both in an ideal scenario (simulating a perfect branch prediction
approach) and in a realistic scenario (using BRANCHOS). For the latter one, however, the observed
improvement is quite limited, calling for more accurate branch prediction approaches.

BOT can be used on projects on which the total coverage is insufficient, in order to run test case
generation on the classes still not covered by test cases. Besides, BRANCHOS can also be used in
isolation, to decide the most adequate search budget to assign to a new class for which automated
test case generation will be executed.

2 RELATEDWORK
In this section we presents an overview of the state of the art on automatic test case generation.
Then, we describe in details the existing techniques for branch coverage prediction.

2.1 Search-Based Test Case Generation
Developers run unit tests to check the presence of faults in their code. However, manually writing
test cases is a time consuming task. Researches theorized many different approaches for automatic
test case generation. While many approaches were introduced in the literature to achieve this goal
(e.g., [13, 29]), we focus mainly of search-based techniques.

In search-based software testing, the set of possible test cases for a given program is represented as
a search space, and the problem of defining test cases is solved using an optimization algorithm [20]
that allows to select a solution maximizing some selected adequacy criteria. One criterion commonly
used is branch coverage, but other criteria, such as exception coverage or weak mutation [25], have
been targeted as well. Random search [15] is the simplest form of search-based optimization algo-
rithm: test cases are randomly selected from the search space and the most valuable ones according
to the defined adequacy criteria are selected. Despite its simplicity, random search is among the most
effective approaches in many contexts [13, 28]. The main limitation of random testing is the absence
of guidance. For example, when targeting branch coverage, there are cases inwhich the probability of
randomly satisfying a given branch condition is very low: a commonly used example is the condition
a == b && b == c, with the integers a, b and c as inputs. For this reason, researchers experimented
more complex approaches to solve this problem. Some approaches proposed in the literature use
genetic algorithms (GAs) to evolve individual test cases (e.g., single target approaches) [30], whole
test suites [11, 26] or many test cases in parallel [23, 24].

Single-target approaches evolve test cases to cover a single target at a time. Tonella [30] introduced
a chromosome representation to evolve test cases for classes in Object-Oriented code. Fraser and
Arcuri [11] used such a representation to define the first approach to evolve whole test suites
instead of single test cases.
Panichella et al. introduced two approaches to improve the whole test suite approach: MOSA

[24] and DynaMOSA [23], both using a many-objective algorithm to evolve test cases in parallel.
Some of the proposed approaches have been implemented in publicly available tools. The ones

mostly used for Java are two open source tools, i.e., Randoop [21] and EvoSuite [10]. Randoop is
based on feedback-directed random test case generation [22], while EvoSuite implements many
evolutionary strategies, but it also features random test case generation and Dynamic Symbolic
Execution [13, 28]. EvoSuite is also available as plugin for Maven, Eclipse and IntelliJ IDEA.

2.2 The Budget Problem in Search-Based Test Case Generation Tools
Despite providing a great support for generating test cases, the previously mentioned tools have
some limitations. First, they cannot automatically determine the expected behavior of code (i.e.,
the “oracle problem” [2]). Randoop and EvoSuite mitigate this issue by generating oracles that
reflect the current behavior of the system. Such a strategy results useful especially in the context
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Table 1. Operator-based probabilities in BCE [9]: the probability is purely based on the structure of the
condition.

Pr(𝑎 ∨ 𝑏) Pr(𝑎) + Pr(𝑏) − Pr(𝑎) Pr(𝑏)
Pr(𝑎 ∧ 𝑏) Pr(𝑎) Pr(𝑏)
Pr(¬𝑎) 1 − Pr(𝑎)
Pr(𝑎 > 𝑏) 0.5
Pr(𝑎 ≥ 𝑏) 0.5
Pr(𝑎 < 𝑏) 0.5
Pr(𝑎 ≤ 𝑏) 0.5
Pr(𝑎 = 𝑏) 𝑞

Pr(𝑎 ≠ 𝑏) 1 − 𝑞

of regression testing. The other limitation of these tools is that they require developers to decide
the time they want the tool to spend searching for test cases for each unit to test. Randoop and
EvoSuite offer features that allow to set the budget at the project-level, without taking into account
differences among the classes and the fact that some classes are naturally more difficult to test
than others. Randoop allows to specify a global search budget that will be used for testing the
whole project: it generates tests for each class until the budget is over. When this happens, the
tool simply stops, i.e., there may be classes left untested. In EvoSuite, the developer can specify a
search budget that will then be used for the test case generation of each class (e.g., 60 second per
class).
To address this problem, Campos et al. [5] introduced a technique, implemented in EvoSuite,

that uses information about the coverage achieved on the classes in past runs of test case generation
to intelligently decide the search budget for a new version of such a class. The main limitation of
this approach is that it requires information about the past coverage to work. For the first run of
EvoSuite on a previously unseen unit to test, they use an approach that proportionally divides the
search budget based on the number of branches of the classes.
Our work is motivated by the will of introducing an approach for intelligently splitting the

search budget assigned by the developer at project level among the classes in the case where no
previous coverage information is available. To achieve such a goal, a possible way is to predict the
branch coverage that will be achieved for a given search budget.

2.3 Prediction of Branch Coverage
Ferrer et al. [9] introduced BCE, a metric that predicts the coverage achieved by automatic test
case generation techniques on a given unit. BCE consists in modeling code as a Markov chain.
Especially, the authors first extract the Control Flow Graph (CFG) of a program, then they consider
the basic blocks of the CFG as the states of the Markov chain and its edges as possible transitions
from a state to another. The authors also add a transition from the states created from exit nodes of
the CFG to the initial state to simulate the behavior of test case generation techniques, that run a
program multiple times. Markov chains require a probability associated to each transition, with the
specific requirement that, for all the transitions 𝐵𝑎,𝑖 from the state 𝑆𝑎 ,

∑
𝐵𝑎,𝑖 = 1.

For all the states that have a single possible transition, the probability associated to such a
transition is 1. In all the other cases, the authors assign the probabilities to the branches 𝐵𝑎,𝑏
using probabilistic rules based on the operators in the branching conditions. Table 1 shows how
probabilities are computed for a given logical expression in a condition. For equality/inequality
tests, the authors use 𝑞 = 1

16 .
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Given the Markov chain representing a program, the authors analytically compute, for each state
𝑆𝑖 , its stationary probability 𝜋𝑖 , i.e., the probability of randomly traversing such a state. Using the
stationary probabilities, for each state 𝑆𝑖 they compute the frequency of appearance as 𝐸 [𝑆𝑖 ] = 𝜋𝑖

𝜋1
.

Finally, the authors compute the expectation of traversing a branch 𝐵𝑎,𝑏 from 𝑆𝑎 to 𝑆𝑏 in a single
run using the formula 𝐸 [𝐵𝑎,𝑏] = 𝐸 [𝑆𝑎] Pr(𝐵𝑎,𝑏). Given the set 𝐵∗ of the branches with branch
expectation lower than 1

2 , BCE is defined as the mean expectation of traversing such branches of a
program:

𝐵𝐶𝐸 =

∑
𝑏∈𝐵∗ 𝐸 [𝑏]
|𝐵∗ |

The main difference between BRANCHOS and BCE is that the latter is meant to predict the
absolute coverage achieved by test cases, while BRANCHOS is aimed at predicting the coverage
given a specific search budget (coverage in time).

3 ADAPTIVELY ASSIGNING THE SEARCH BUDGET
Consider a software project 𝑃 , composed by 𝑛 classes 𝐶𝑆 = {𝐶1,𝐶2, . . . ,𝐶𝑛}, and a global search
budget, 𝐵, assigned by a developer to an automatic test case generation tool in order to test the
classes of 𝑃 . It is possible to see the partitioning of 𝐵 among𝐶𝑆 as an optimization problem (Budget
Optimization Problem). The constraint of such a problem is that the sum of the budgets 𝑏𝑖 assigned
to each class 𝐶𝑖 should be equal to 𝐵. The objective is to maximize the total number of branches
covered in the system. The variables of the problem are the search budgets assigned to the classes,
i.e., 𝑏1, 𝑏2, . . . , 𝑏𝑛 . Formally, the objective function is defined as:

max
𝑛∑︁
𝑖=1

BCov𝑡 (𝐶𝑖 , 𝑏𝑖 ) (1)

where BCov𝑡 (𝐶𝑖 , 𝑏𝑖 ) represents the total number of branches covered by a test case generation
tool 𝑡 on a class 𝐶𝑖 with 𝑏𝑖 as budget. BCov𝑡 (𝐶𝑖 , 𝑏𝑖 ) ranges between 0 and Branches(𝐶𝑖 ), i.e., the
total number of branches in 𝐶𝑖 . BCov𝑡 (𝐶𝑖 , 𝑏𝑖 ) can be also expressed as Cov𝑡 (𝐶𝑖 , 𝑏𝑖 ) × Branches(𝐶𝑖 ),
where Cov𝑡 (𝐶𝑖 , 𝑏𝑖 ) is a function that returns the percentage of branch coverage (which ranges
between 0 and 1), and Branches(𝐶𝑖 ) indicates the number of branches of the class 𝐶𝑖 . Even if more
convoluted, we will mainly use such a form in the rest of the paper since it simplifies the solution
we will present later. Since Branches(𝐶𝑖 ) is fixed, the main problem in optimizing this function is
that𝐶𝑜𝑣𝑡 (𝐶𝑖 , 𝑏𝑖 ) is unknown a-priori, i.e., it is necessary to run 𝑡 on𝐶𝑖 with 𝑏𝑖 budget to know such
a value.

We introduce BOT (Budget Optimization for Testing), an approach to solve the Budget Optimiza-
tion Problem. BOT uses a search-based algorithm to determine the search budget allocation that
will allow to achieve the maximum coverage. To do this, it requires an estimation of the branch
coverage achieved on a class with a given budget (i.e., 𝐶𝑜𝑣𝑡 (𝐶𝑖 , 𝑏𝑖 ) in the objective function). To
estimate such a value, BOT uses BRANCHOS (BRANch Coverage HistOry Seer), a novel approach
to predict branch coverage “in time”. In this section we first describe BRANCHOS and the predictors
we introduce to estimate branch coverage in time; then, we describe our search-based algorithm
that we use in BOT to optimize the budget allocation.

3.1 BRANCHOS: Predicting Coverage in Time
The basic assumption behind BRANCHOS is that the coverage achieved by test case generation
approaches in time depends on features that can be measured on the classes under test. Under this
assumption, classes with similar features are likely to have similar coverage in time. Given a class
𝐶 for which we want to measure the expected coverage and a virtual search budget 𝑏, BRANCHOS
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computes a set of metrics on𝐶 and uses such metrics and 𝑏 as features of a regression model which
has a dependent variable𝐶𝑜𝑣𝑝 (𝐶,𝑏), i.e., the predicted coverage that can be achieved on𝐶 by using
𝑏 as search budget.

We use the following metrics to predict the coverage:

• Class Size: the size of a class is known to be negatively correlated with the coverage [8]. Intu-
itively, the higher the number of instructions to test, the longer the time needed to cover all of
them. Also, having more instructions increases the likelihood that an exception occurs, making
harder to cover some instructions. For these reasons, we include the Class Size as a feature in
BRANCHOS. We measure the Class Size as the total number of bytecode instructions in the class.
• Number of Branches: since BRANCHOS is defined to predict the branch coverage, we hypothe-
size that the number of possible targets in a class is a relevant factor in determining the coverage
achieved in time. We measure the number of branches (#Branches) as the number of conditional
branching instructions and switch instructions at bytecode level.
• Number of Methods: like the previously outlined metrics, the number of methods (#Methods)
may be an indicator of the complexity of the class. Specifically, it could be necessary to call
methods in a specific order to test some branches. Consider the class Stack: if on an empty stack
the method pop is invoked before a push operation is performed, the code related to the deletion
of the element from the top of the stack is not executed. The higher #Methods, the higher the
possible permutations of method executions to be tested.
• Number of Infinite-Domain Fields: while a high number of methods may indicate that many
different invocation sequences are possible, it does not provide information about the possible
states in which the class may be. The number of states of a class 𝐶 may be computed as
States(C) = ∏

𝑓 ∈fields (C) |type(f ) |, where fields(C) is the set of fields in 𝐶 and |type(𝑓 ) | indicates
the domain size of a type, i.e., the number of possible values it may have. For example, an int
variable can have 232 possible values. We compute the domain size of a primitive type 𝑇 as
2bytes (T ) , except for boolean which only have domain size 2 by definition. The domain size of
array-types is always virtually infinite in Java since the size of arrays is decided when they are
instantiated and it can not be deduced from the static type. Finally, we compute the domain
size of non-primitive/array types (i.e., type defined as classes) as States(C). Given our previous
definition, it is very likely that any class has a virtually infinite number of states since it is
sufficient that it contains an array field or even a String type, which contains array fields.
Consider two classes, one with a String field and one with ten String fields: it is clear that
the latter can have a larger number of possible states than the former and it is more difficult to
handle for a search-based test case generation technique. For this reason, instead of counting the
number of states that an object of a given class can achieve, we count the number of infinite-size
fields (#Fields).
• Number of Infinite-Domain Parameters: besides the order of invocation of methods, the
arguments passed to the methods are the main aspect that determines which branches are
covered. A high number of parameters may indicate that there are many different variables
affecting the code execution, and testing the interaction among all of them may be more difficult
[8]. Similarly to what we do for #Fields, we only take into account the infinite-domain parameters,
i.e., the ones that mostly increase the number of combinations to take into account. We measure
the number of infinite-domain parameters (#Parameters) of a class as the sum of the number of
parameters of all the methods belonging to the class under test.
• Number of Private Methods: in Java, test cases can only invoke public and protected methods,
but they cannot call any private method of the class under test: private methods can only be
used from inside the class. Therefore, the input of such methods cannot be directly decided

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



An Adaptive Budget Allocation Approach for Search-Based Test Case Generation 1:7

by the test case generation approach, that can only indirectly cover their instructions through
public methods implemented in the class. Thus, we also measure the number of private methods
(#PrMethods) of the class under test.
• Branch Coverage Expectation: we also use BCE, the metric introduced by Ferrer et al. [9]
detailed in Section 2. We compute BCE for all the methods in the class under test and we consider
the mean as a feature in BRANCHOS.
• Branch Switching Difficulty: branching conditions may have very different probabilities of
being evaluated as true or false. Since search-based test case generation is random at its base,
knowing such probabilities a-priori would be of fundamental importance to predict the coverage
in time. The higher the absolute difference between such a probability and 0.5, the harder it
would be to switch the truth value of that condition either to true or false. We introduce PrEst, a
technique for estimating the probability of satisfying a condition, and we use such an estimation to
compute the Branch Switching Difficulty (BSD). Given a condition 𝑐 and its estimated probability
𝑃 (𝑐) (we detail how we estimate it in the next paragraph), we compute BSD as |0.5 − 𝑃 (𝑐) |. We
compute aggregate BSD at class level using two distinct metrics: we compute the maximum and
the mean BSD of the conditions of all the branching instructions in the class under test. The
rationale for also using the maximum here is to consider the most challenging condition as a
feature of our model.

It is worth noting that we did not consider the Cyclomatic Complexity as a metric. We did this
because it is measured as a function of the number of branches, a metric we already consider.
Estimating the Probabilities of Conditions. Ferrer et al. [9] estimate the probabilities of condi-
tions using simple probabilistic properties, that uniquely depend on the binary operators used in
them. For example, they use 0.5 as fixed probability of satisfying all the conditions containing the
<=. Table 1 in Section 2 shows all the probabilities associated to the different comparison operators
(the authors use 𝑞 = 1

16 ).
Such an approach suffers from two main problems. First, it does not take into account the nature

of the operands: if both 𝑎 and 𝑏 are parameters of the method, the probability of satisfying any
condition may differ from the case where 𝑎 and 𝑏 are constants or are not strictly dependent on the
user input (e.g., they represent a timestamp). The second problem is that this approach does not
take into account the context in which the condition is. Consider for instance the condition i <

list.size(). It is reasonable to assume that these types of conditions are more frequently satisfied
(i.e., true value) than they are not in practice. This happens because they are frequently used in for
loops, and in these cases the analytical probability of satisfying the condition is list.size

list.size+1 , which
tends to be higher than 0.5.

We try to tackle these two problems defining PrEst, a context-aware approach for estimating the
probability of satisfying a condition. We achieve this goal by mining information about the coverage
of conditions from other software projects in order to estimate more precisely the probabilities of
new conditions.

Consider the condition𝐶𝐵𝐼 of a branch instruction 𝐵𝐼 . Without loss of generality, we can assume
that every 𝐶𝐵𝐼 appears in the form 𝑣𝑖 ⋄ 𝑣 𝑗 , where 𝑣𝑖 and 𝑣 𝑗 are variables and ⋄ is a binary operator.
Indeed, a branch instruction with a more complex condition can be broken into many branch
instructions in the binary form previously presented. This is what happens in low-level program
representations, like bytecode. Given this, we aim to determine the sequence of operations that
involve 𝑣𝑖 and 𝑣 𝑗 and if their value depends, in some way, on parameters and/or instance variables.
To achieve this goal, we use a lightweight version of backward slicing [3]: we select all the

instructions that affect a given line (specifically, a condition); unlike backward slicing, we do not
necessarily want to construct a compilable program or a program that preserves the behavior of
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Listing 1. Example method for the computation of 𝐶𝑆 .
1 public void test(String x, int num) {
2 if (num > 0) {
3 x = x.downcase ();
4 } else {
5 x = x.upcase ();
6 }
7 if (x.equals("TEST")) { // Target condition
8 // ...
9 }
10 }

the original one as for a specific variable. To define the sequence of instructions in which we are
interested, we create an empty stack𝑂 containing at the beginning only the comparison operator ⋄
of𝐶𝐵𝐼 . We start from the variables 𝑣𝑖 and 𝑣 𝑗 and we look for the instructions in which such variables
are assigned, respectively 𝐼𝑖 and 𝐼 𝑗 . If these instructions contain a method call or an arithmetical
operation, we push them on top of 𝑂 . We keep doing this also for the variables used in 𝐼𝑖 and 𝐼 𝑗 ,
until we get to parameters, instance variables or already analyzed variables (it may happen in
loops). At the end of this process, 𝑂 contains the list of operations affecting data that are used
in the condition 𝐶𝐵𝐼 . We memorize whether instance variables and/or parameters are met in this
process. To remark the difference with backward slicing, let us consider the example in Listing 1:
the backward slice of the target condition (line 7) includes the first if statement (line 2): indeed,
this is needed to preserve the original behavior of the program. On the other hand, we do not
consider such an instruction since num does not directly affect x, the variable we are analyzing.
Therefore, at the end, we know (i) the sequence of operations 𝑂 (i.e., the operations performed

from the beginning of the method to the branch instruction of which we want to know the
probability), and (ii) if parameters and instance variables are involved in the computation. We
call the data structure containing such information condition signature (𝐶𝑆). We conjecture that
conditions that have similar condition signatures have similar probabilities of being satisfied. We
call a condition signature controllable if it depends on parameters and/or instance variables and not
controllable otherwise.

Given a dataset 𝐷 of condition signatures associated with the probability of being satisfied using
a search-based approach, we define a method for determining the probability of a new condition
signature of being satisfied. We compute the context-aware probability Pr𝑐 of satisfying a condition
𝐶 with a condition signature 𝐶𝑆 with the following formula:

Pr
𝑐
(𝐶,𝐶𝑆) =

𝑊 Pr𝑠 (𝐶) +
∑

𝑄 ∈𝐷 Pr𝑐 (𝑄)𝑠𝑖𝑚(𝐶𝑆𝐶 , 𝑄)
𝑊 +∑𝑄 ∈𝐷 𝑠𝑖𝑚(𝐶𝑆𝐶 , 𝑄)

(2)

where 𝑠𝑖𝑚(𝐶𝑆1,𝐶𝑆2) → [0, 1] is a similarity function between condition signatures, Pr𝑠 is the
structural probability function defined by Ferrer et al. [9] and𝑊 is a parameter representing the
weight of the structural probability.

In other words, we compute the probability of satisfying a condition 𝐶 as the weighted sum of
the probabilities of satisfying conditions with similar condition signatures, where the weights are
the similarities between 𝐶𝑆 and the other condition signatures in the dataset. We also add to this
weighted sum the mean Pr𝑠 (𝐶), the structural probability of satisfying 𝐶 . We use a constant,𝑊 , as
weight for Pr𝑠 (𝐶). We introduced𝑊 to be able to tune the level of importance we should give to
Pr𝑠 (𝐶) when combining it with the structural probability instead of assuming such two parts as
equally important. We also consider structural probabilities to handle the cases in which we find
conditions with condition signatures different from the ones in the dataset.
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Indeed, if there is no condition signature with high similarity, the correction over the structural
probability is very small; on the other hand, if the similarity is high, the correction is more significant.
We define a similarity measure, 𝑠𝑖𝑚𝑘 (𝐶𝑆1,𝐶𝑆2), based on the length of the Longest Common

Subsequence (LCS) of 𝐶𝑆1 and 𝐶𝑆2. First, we compute the length of the LCS between 𝐶𝑆1 and 𝐶𝑆2
(𝐿𝐿𝐶𝑆). Such a measure indicates how many operations appear in both the sequences in the same
order, even if one of the sequences contains more operations than the other one. Then, we normalize
𝐿𝐿𝐶𝑆 on the length of the longest sequence between 𝐶𝑆1 and 𝐶𝑆2 and we raise the resulting value
to the power of 𝑘 (the role of the 𝑘 parameter is, as explained later, to penalize the similarity of
sequences sharing few operations):

𝑠𝑖𝑚𝑘 (𝐶𝑆1,𝐶𝑆2) =
{
[ 𝐿𝐿𝐶𝑆 (𝐶𝑆1,𝐶𝑆2)
max( |𝐶𝑆1 |, |𝐶𝑆2 |)) ]

𝑘 , if 𝑐𝑝 (𝐶𝑆1,𝐶𝑆2)
0, otherwise.

(3)

where 𝑐𝑝 (𝐶𝑆1,𝐶𝑆2) is true only if the signatures are both controllable or both not controllable.
Consider the following example, in which we set 𝑘 to 2:

𝐶𝑆1 = {Integer.parseInt, +, ∗, <}𝑐𝑜𝑛𝑡𝑟
𝐶𝑆2 = {Integer.parseInt, ∗, >}𝑐𝑜𝑛𝑡𝑟

In this case, since both the sequences are controllable, the similarity is not 0 a priori. We first
compute 𝐿𝐿𝐶𝑆 , which is 2 in this case (i.e.,Integer.parseInt, *). We divide the 𝐿𝐿𝐶𝑆 by the length
of 𝐶𝑆1 (the longest sequence), obtaining 0.5 as a result. Finally, we compute 0.52, and we have that
𝑠𝑖𝑚2 (𝐶𝑆1,𝐶𝑆2) = 0.25. It is worth noting that the higher 𝑘 , the lower the similarity of sequences
sharing few operations. In our context, it is important to penalize (i.e., minimize) the similarity
of two sequences only sharing a few operations, to minimize their impact in the computation of
Pr𝑐 (𝐶). We tune the parameters 𝑘 and𝑊 in our study.
The similarity measure is instead set to 0 when one of the signatures is controllable and the

other one is not. In these cases, indeed, although the sequences of calls are identical, the truth value
of only one of the conditions can be changed by the search-based technique modifying the value
of a parameter and/or of an instance variable. Therefore their satisfaction probabilities may be
unrelated.

It is worth noting that PrEst is computed statically: if there are alternative branches that assign a
given variable in different ways, we cannot know which one will be executed. In such cases, we
include in the 𝐶𝑆 the operations performed in all the alternative branches. Consider again the
example in Listing 1: the last condition may depend on the execution of either downcase or upcase.
We include in the 𝐶𝑆 both such operations. The resulting 𝐶𝑆 would be the following:

𝐶𝑆𝑒 = {String.downcase, String.upcase, String.equals}𝑐𝑜𝑛𝑡𝑟
Such a 𝐶𝑆 never reflects an actual execution scenario: only one of the methods will be called for a
given call to the method test. However, if the dataset 𝐷 contains a sequence that includes only
one of the methods, it will still have a high similarity with the 𝐶𝑆 built in the example: indeed, the
similarity measure we use, i.e., 𝐿𝐿𝐶𝑆 , considers also the cases in which there is a lack of one or
more elements in the sequence, but the order is the same.
The last step to compute Pr𝑐 (𝐶) is the creation of dataset 𝐷 of condition signatures associated

with the probability of being satisfied using a search-based approach. We show how we built such
a dataset and how we estimate the parameters of PrEst in Section 4.
Training the Model. A requirement for BRANCHOS is a dataset 𝐷𝑐𝑜𝑣 containing information
about the coverage achieved in time for a set of classes. Such a dataset must contain triples ⟨𝐶𝑖 , 𝑏 𝑗 ,

𝐶𝑜𝑣 (𝐶𝑖 ,𝑏 𝑗 )∗⟩, where𝐶𝑖 is the class under test, 𝑏 𝑗 is the search budget consumed and 𝐶𝑜𝑣∗ (𝐶𝑖 , 𝑏 𝑗 ) is

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:10 S. Scalabrino et al.

the coverage achieved using 𝑏 𝑗 as search budget for𝐶𝑖 . Then, we measure all the metrics previously
described (i.e., the independent variables of BRANCHOS) on all the classes in 𝐷𝑐𝑜𝑣 , defining a new
dataset, 𝐷 𝑓 𝑒𝑎𝑡 , containing tuples ⟨𝐶𝑖 , 𝑀1 (𝐶𝑖 ), ..., 𝑀𝑛 (𝐶𝑖 )⟩, where 𝑀𝑖 are the metrics we use. The
training set used by BRANCHOS is𝑇 = 𝐷𝑐𝑜𝑣 +𝐷 𝑓 𝑒𝑎𝑡 , where 𝐷𝑐𝑜𝑣 and 𝐷 𝑓 𝑒𝑎𝑡 are merged on the class
to which they belong. Note that a class 𝐶𝑖 can appear in 𝑇 multiple times, with the same values for
the metrics, but different budget (𝑏 𝑗 ) and, possibly, different coverage levels achieved (𝐶𝑜𝑣∗ (𝐶𝑖 , 𝑏 𝑗 )).

It is worth noting that BRANCHOS is designed to be independent on the search-based test case
generation technique used: if a different tool or a different technique is used, it would be sufficient
to build a new training set. In our experiments reported in Section 4 and Section 5 we experiment
it with a specific test case generation technique, i.e.,MOSA.

3.2 Optimizing the Search Budget
We propose a search-based approach to optimize the budget allocation inspired by hill climbing.
A solution represents the budget that will be assigned to each class under test and the objective
function is an approximation of the one presented in Equation 1, in which we use the prediction
provided by BRANCHOS as a proxy for 𝐶𝑜𝑣𝑡 (𝐶𝑖 , 𝑏𝑖 ), i.e., the coverage that will be achieved on the
class 𝐶𝑖 using search budget 𝑏𝑖 .

Algorithm 1 shows our optimization algorithm. It requires three parameters: (i) the list of classes
𝐶; (ii) the initial solution 𝑆 , which is an array of the same length of 𝐶 and indicates the budget
assigned to each of them; (iii) the maximum number of iterations𝑚𝑎𝑥𝐼𝑡𝑒𝑟 . At each iteration, we first
determine, for each class, which budget increment would allow it to have the most cost-effective
coverage improvement (i.e., the highest improvement at the lowest budget cost). We determine such
a budget cost 𝜖𝑖 for each class. To compute the cost-effectiveness we simply divide the coverage
gain by the cost. For example, let us assume the following scenario: there is a class 𝐶𝑖 with 60
seconds of budget that has a predicted coverage of 20 branches; adding 5 seconds would result
in an increase of 5 branches (25 covered branches), while adding 10 seconds would result in an
increase of 7 branches (27 covered branches). In this case, we set 𝜖𝑖 = 5 since its cost effectiveness
is higher ( 55 > 7

10 ).
At this point, for each class 𝐶𝑖 , we have (i) a 𝜖𝑖 , which indicates the best budget increment, (ii) a

coverage increment 𝐵𝐶𝑜𝑣 (𝐶𝑖 , 𝑆𝑖 +𝜖𝑖 ) −𝐵𝐶𝑜𝑣 (𝐶𝑖 , 𝑆𝑖 ), and (iii) the cost-effectiveness of such a change,
computed as 𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖+𝜖𝑖 )−𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖 )

𝜖𝑖
. We pick the class for which it is possible to achieve the

most cost-effective budget increment, and we call it 𝐶ℎ . Then, we search for the class 𝐶𝑙 for which
decrementing the budget by 𝜖ℎ , i.e., the budget required by𝐶ℎ , allows to minimize the coverage loss.
Finally, we try to increment the total coverage by removing 𝜖ℎ from the budget of 𝐶𝑙 and assigning
it to 𝐶ℎ : if such an operation increments the total coverage, we move the budget and we repeat
the procedure, otherwise we stop. The algorithm stops anyway when the maximum number of
iterations is reached.
To determine the initial solution 𝑆 for BOT we divide the budget proportionally to the number

of branches of the classes, i.e., we use the “Budget” approach defined by [5].
We preferred to use a local-search technique because it is more natural for the budget-optimization

problem: such a problem has a constraint, i.e., the budget used should be equal to the total budget
allocated at project level. This can be easily achieved with a local-search technique: as we showed,
all the operations performed at each step do not modify the total budget by design. On the other
hand, using a genetic algorithm to achieve the same goal would be more problematic: it would be
necessary to define a chromosome representation ensuring that all possible chromosomes are valid
solutions. For example, a trivial solution would be to represent a solution as an array of integers,
where the number at position 𝑖 represents the budget to assign to the 𝑖-th class. However, most of
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Algorithm 1 BOT algorithm.
Data: 𝐶 , 𝑆 ,𝑚𝑎𝑥𝐼𝑡𝑒𝑟

Result: S
𝑖𝑡𝑒𝑟 ← 0
while 𝑖𝑡𝑒𝑟 ≤ 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do

for 𝑖 ∈ {0, . . . , |𝐶 |} do ⊲ Determine the best budget increase 𝜖 for each class
𝜖𝑖 ← max arg𝜖

𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖+𝜖)−𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖 )
𝜖

end for
ℎ ← max arg𝑛𝑖=1

𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖+𝜖𝑖 )−𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 ,𝑆𝑖 )
𝜖𝑖

⊲ Class with the highest gain given its 𝜖𝑖
𝑙 ← min arg𝑛𝑖=1 𝐵𝐶𝑜𝑣

∗
𝑡 (𝐶𝑖 , 𝑆𝑖 ) − 𝐵𝐶𝑜𝑣∗𝑡 (𝐶𝑖 , 𝑆𝑖 − 𝜖ℎ) ⊲ Class with the lowest loss given 𝜖ℎ

𝑄 ← 𝑆 ⊲ Create a test solution 𝑄 by copying the current solution
𝑄ℎ ← 𝑄ℎ + 𝜖ℎ ⊲ Try to increase the budget for class that would get the maximum gain
𝑄𝑙 ← 𝑄𝑙 − 𝜖ℎ ⊲ Try to reduce the budget for the class that would have the minimum loss
if

∑
𝑄𝑖 ≤

∑
𝑆𝑖 then

return 𝑆 ⊲ If the coverage of the test solution did not increase, stop
else

𝑆 ← 𝑄 ⊲ If the coverage increased, the test solution 𝑄 becomes the current solution
end if
𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1

end while

the solutions obtainable with this chromosome would not meet the constraint (e.g., ⟨60, 100, 100⟩
would not be a valid solution if the total budget is 180).

4 EMPIRICAL STUDY DESIGN
The goal of this study is to investigate whether (i) BRANCHOS is able to predict branch coverage
in time and (ii) using BOT it is possible to find a budget allocation that allows to improve the
project-level branch coverage. The context consists of 10,349 Java classes from ten popular Java
software systems, while EvoSuite is used as a representative instance of search-based unit testing
tools.

Our study is steered by the following research questions:
• RQ1:What is the coverage prediction accuracy of BRANCHOS when varying the search budget?
With this research question we want to understand what is the branch coverage prediction
accuracy of BRANCHOS for different search budgets.
• RQ2: Is BOT able to improve the effectiveness of search-based unit testing tools in its ideal form?
We study whether using BOT with an ideal prediction approach it is possible to improve the
branch coverage and the effectiveness at project level.
• RQ3: Is BOT able to improve the effectiveness of search-based unit testing tools when used with
BRANCHOS? We study whether using BOT with BRANCHOS it is possible to improve the
branch coverage and the effectiveness at project level.

4.1 Parameters Tuning
Before discussing how we answered our research questions, we detail the context and the procedure
used to tune (i) the 𝑘 and𝑊 parameters of the novel metric PrEst used as coverage predictor by
BRANCHOS The results of the tuning will be presented at the beginning of the section discussing
the achieved results. The best parameters will be used to answer our research questions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:12 S. Scalabrino et al.

Tuning of PrEst. Such a tuning was run on five projects. We selected the five most popular libraries
in Maven by excluding those that are used by EvoSuite itself (e.g.,junit). Indeed, the version of
EvoSuite we used does not work when used to generate test cases for projects it depends upon.
This process resulted in the selection of the five projects listed in the top part of Table 2. From each
of these projects, we extracted the 100 classes having the highest number of conditional branches
and run on them a modified version of EvoSuite that stores the number of times each branch
condition was evaluated both as true and false. We used a search budget of 120 seconds per class.
In this context, multiple runs are not necessary, because conditions are already evaluated multiple
times in a single run. We used the empirically recorded frequencies to estimate the probabilities
associated with each branch condition. The instances of our dataset are composed by the branching
instructions and the probability to evaluate their conditions as true. In total, such a dataset is
composed by 2,588 pairs ⟨branching instructions, probability⟩. Note that we preferred to focus only
on the 100 classes having the highest number of conditional branches in each project for two
reasons: (i) we wanted to balance in our dataset the data points extracted from the subject systems,
since the five projects have substantially different size (i.e., from 123 to 1,865 classes); (ii) given
the first condition and the fact that the cost of running EvoSuite on each class is the same (i.e.,
120 seconds), we preferred to consider the 100 classes having the highest number of conditional
branches in order to maximize the number of collected pairs for our dataset.
Once built the dataset, we tune the parameters required by BRANCHOS comparing the mean

squared error achieved by different versions of it. We evaluated BRANCHOS by varying 𝑘 from
1 to 10 at steps of 1 and𝑊 from 0 to 10 at steps of 1, for a total of 110 ⟨𝑘,𝑊 ⟩ combinations. We
choose the parameters 𝑘 and𝑊 that allow us to achieve the lowest mean squared error. Given a
branch condition 𝑐 , its actual probability empirically assessed Pr∗ (𝑐) and its predicted probability,
Pr(𝑐), we compute the squared error as 𝑒2𝑐 = (Pr(𝑐) − Pr∗ (𝑐))2 and the mean squared error as the
mean of 𝑒2𝑐 for all the branch conditions extracted from our dataset.
Tuning of the Search Algorithms. BOT does not rely on any parameter. However, as previously
stated, the initial solution that is optimized by such an algorithm is based on the “Budget” approach
defined by Campos et al. [5] which allocates the budget based on the number of branches of
the classes under test. Such an approach requires to specify the minimum budget that should be
allocated for each class. The authors use a one minute budget in a context in which the global
budget for each project is 3 minutes times the number of classes. Since our global budget is 1 minute
times the number of classes, we needed to use a different parameter, otherwise we would have had
the same results of a fixed budget allocation approach. To set such a parameter, we used one of
the 10 projects of our dataset (i.e., PDFSam). We tried different values for the minimum allocation
budget ranging between 5 and 55, with a step of 5. We chose the value that allows to achieve the
highest number of actual covered branches for the “Budget” approach alone (i.e., without running
BOT): we did this since we use “Budget” as a baseline and we want to perform a fair comparison
with it, i.e., we did not want to choose a value that favours the optimization step.

4.2 Context of the study
To answer our research questions, we use the ten systems reported in the bottom part of Table 2.
We used the ten most popular Java software systems from the SF110 dataset [12].

While all ten systems have been used to answer RQ1, nine were used for RQ2 and RQ3 (i.e., all
but PDFsam, that was used for the tuning of the search algorithms). We kept into account all the
classes belonging to the main JARs of such software systems, excluding those that could not be
tested (anonymous classes, interfaces and abstract classes). In total, our study context consists of
10,349 classes.
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Table 2. Context of the study: for each project we report both the total number of classes and the number of
classes considered in our study.

Project Total classes Classes considered
Tu

ni
ng

commons-io 123 100
commons-lang 132 100
guava 1,865 100
mockito-all 752 100
jackson-databind 786 100

R
Q
1-
2

Netweaver 210 185
Squirrel SQL 1,582 894
SweetHome 3D 452 159
Vuze 3,949 1,948
Freemind 851 411
Checkstyle 219 134
Weka 1,466 851
Liferay 8,616 5,353
PDFsam∗ 406 338
Firebird 364 197

Total 21,773 10,970

To build a dataset that we could use to answer RQ1, RQ2, and RQ3, we recorded the coverage
achieved by EvoSuite during each second of execution on all classes of our subject system. We
used MOSA [24] as test case generation approach, which is the one with the best performance
available in EvoSuite. We did not use DynaMOSA [23], the evolution of MOSA, because such an
approach was not implemented in the latest release of EvoSuite at the time of the experiment. We
set the search budget at 300 seconds per class. In total, our 𝐷𝑐𝑜𝑣 dataset is composed by 3,104,700
instances. To take into account the randomness of the test generation process, we run EvoSuite
five times for each class.
It is worth noticing that generating test cases for all the classes of our study and with such a

large search budget per class is very expensive. About 13 days of computation were needed to
acquire all the data running six parallel instances of EvoSuite on a dedicated virtual machine with
8 cores and 16GB of RAM. For this reason, we preferred to generate test cases for more classes
rather than performing more than 5 runs for the same classes. We discuss this threat in Section 6.

4.3 Experiment Methodology
To answer RQ1, as a preliminary step we compute the mean coverage achieved for each search
budget and class among the five EvoSuite runs. Then, we perform a cross-project validation,
i.e., we train the model on nine projects and we test it on the tenth one, using one project at a
time as test set, to compute the coverage as predicted by BRANCHOS (RQ1). Such a strategy was
selected to avoid training the model on classes of the system on which we will then predict the
coverage. We choose Random Forest [4] as regression technique since it performed better than
other techniques in our preliminary tests. Since BRANCHOS is the first approach designed to
predict branch coverage in time, we do not have an actual baseline.

BCE cannot be used for this purpose either, since it cannot take the search budget as input. For
this reason, we use a trivial approach as baseline: we define several constant regressors 𝐶𝑃𝑏 , one
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for each possible search budget 𝑏 we considered in our study. With constant regressor we mean a
regressor that always predicts the same value, without taking into account the characteristics of
the input class. The constant regressor 𝐶𝑃𝑏 (𝐶) always returns the mean branch coverage achieved
on all the classes in the training set in exactly 𝑏 seconds, regardless of the input class 𝐶 . Therefore,
given any class 𝐶 and a search budget 𝑏, the baseline returns 𝐶𝑃𝑏 (𝐶). Since we run EvoSuite for
300 seconds, the baseline approach contains 300 𝐶𝑃𝑏 , with 𝑏 ∈ {1, . . . , 300}. Also in this case, we
use the mean squared error to compare the two approaches. Given a class 𝐶 and a search budget 𝑏,
we have the actual coverage, 𝐶𝑜𝑣∗ (𝐶,𝑏), and the predicted coverage, 𝐶𝑜𝑣 (𝐶,𝑏). We compute the
error as 𝑒𝐶 = |𝐶𝑜𝑣 (𝐶,𝑏) −𝐶𝑜𝑣∗ (𝐶,𝑏) |.

We use a Wilcoxon signed-rank test on the squared errors of the models to compare them. Our
null hypothesis is that “there is no difference between the errors introduced by the models”. We reject
the null hypothesis, and thus we consider the difference significant, if the 𝑝-value of the test is
lower than 0.05.
We also measure the effect size, using the Cliff’s delta [6], to understand the magnitude of

difference among the models. Cliff’s delta 𝛿 lays in the interval [-1, 1]: the effect size is negligible
for |𝛿 | < 0.148, small for 0.148 ≤ |𝛿 | < 0.33, medium for 0.33 ≤ |𝛿 | < 0.474, and large for
|𝛿 | ≥ 0.474. If 𝛿 > 0, it means that the first distribution (in our case, always the distribution
representing the results achieved by our approach) is larger than the second (the baseline), while
the opposite happens otherwise. Finally, we also report two additional measures: (i) the Pearson
correlation between the predicted values and the actual values: this measure indicates if a higher
actual value results in a higher predicted value; (ii) PRED(25), a metric which indicates how many
predictions have a relative error lower than 25%. Given the actual and the predicted vectors, 𝑝∗ and
𝑝 , we compute PRED(25) as:

𝑃𝑅𝐸𝐷 (25) =
𝑛∑︁
𝑖

{
1
𝑛
, for |𝑝𝑖−𝑝

∗
𝑖 |

𝑝∗
𝑖
≤ 0.25

0, otherwise

To answer RQ2 and RQ3 we use our search algorithm previously described to optimize the total
coverage predicted for each of the nine projects used in this research question. Since in RQ2 we
want to evaluate BOT in an ideal scenario, we assume the existence of a perfect prediction model,
which makes no mistakes (“Ideal”) and we use it to run the optimization (BOTIdeal). To do this,
we always predict the coverage actually achieved by EvoSuite in the five runs we executed. In
RQ3, instead, we evaluate BOT in the realistic scenario (BOTBRANCHOS) in which we use the best
prediction approach available (i.e., BRANCHOS). For both the research questions, as a first step
we run the approaches we compare (i.e., BOTIdeal, BOTBRANCHOS, and the two baselines described
below) on the nine projects to determine the search budgets they would assign to each class. Then,
we use such budgets to compute the actual coverage achieved by EvoSuite distinctly in the five
runs we completed. We used the coverage results obtained to answer RQ1 to do this, i.e., we did
not need to re-run EvoSuite.

It is worth noting that our approach requires some time to optimize the search budget. Thus, to
take this into account in the comparison with the baselines, we compute the average time needed
to run our approach and we remove it from the global budget of each project. This was done to
simulate a scenario in which the developer has a given budget 𝐵 available to test a system, and 𝐵
includes both the time needed to run our approach as well as the time needed to run the test case
generation. To do this, we preliminarily run our algorithm with the exact setting of the experiment.
Then, we computed the average time needed. We found it is very fast since it takes only 2 seconds
for project, on average. When experimenting both BOTIdeal and BOTBRANCHOS, we remove such
time from the global budget of each project. We report, for each project, the mean number of
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total branches covered. For each project, we use the t-test to check if the difference between the
total number of covered branches changes when using our approach and the baselines. The null
hypothesis is that the project coverage achieved over different EvoSuite runs is the same: we
reject such an hypothesis if the 𝑝-value is lower than 0.05. Finally, we also report the Cohen’s d
statistic [7] to compute the effect size of the significant differences. The effect size is negligible
for |𝑑 | < 0.2, it is small for 0.2 ≤ |𝑑 | < 0.5, it is medium for 0.5 ≤ |𝑑 | < 0.8, while it is large
otherwise. It is worth noting that, in this case, we use parametric statistics (i.e., t-test and Cohen’s
d), which implicitly assume the normality of the distributions we compare. We can safely make
this assumption since each sample of the distributions we compare (i.e., the project coverage) is the
sum of many random variables (i.e., the class coverages): according to the Central Limit Theorem,
regardless of the distribution of the single random variables, the distribution of their normalized
sum tend to be normal. EvoSuite failed to generate test cases in some runs for some classes: this
means we have the coverage achieved in five runs only for a subset of the classes we take into
account. ForRQ2 andRQ3 we only consider the classes for which EvoSuite successfully completed
all the five runs, i.e., 9,787 classes in total.

To check if our approach is able to improve the effectiveness of generated tests we also complete
five additional runs of EvoSuite for each class to compute the strong mutation score. We compare
the number of mutants killed running tests generated using our optimization strategy and the
baseline which achieves the highest branch coverage. Also in this case we use the t-test to check if
the number of killed mutants between the tests generated with our approach and the ones generated
with the baseline is significantly different and the Cohen’s d to report the effect size of significant
differences.

Baselines. We compare BOTIdeal and BOTBRANCHOS with two baselines: the first one equally
divides the project-level search budget among the classes (the Simple approach described by Campos
et al. [5]); the second one is the Budget approach introduced by Campos et al. [5], which the authors
use when no historical information is available. The Budget approach divides the search budget
proportionally to the number of branches of the classes: a higher budget is assigned to classes with
more branches to cover. Specifically, we first compute the budget per branch rate (𝑏𝑏𝑟 ) dividing the
total budget by the total number of branches; then, for each class𝐶 with 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 (𝐶) branches, we
compute the candidate budget 𝑏𝑏𝑟 ×𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 (𝐶). Since such a value can be extremely low for small
classes (even 0) and extremely large for big classes, we set a minimum and a maximum allocable
budget. If the candidate budget is not in such a range, we use the minimum or the maximum value
instead and we update 𝑏𝑏𝑟 based on the remaining budget and the remaining branches. We use 300
as maximum allocable budget. We tune the minimum allocable budget on the same project we use
for tuning BOT (i.e., PDFSam) using all the possible values between 5 and 55. We selected 40 as
minimum allocable budget since it is the value that allows to achieve the highest coverage on such
a project. For our algorithm we assign a project-level search budget of 60 × |𝐶 |, i.e., 60 seconds
times the number of classes of the project.
We summarize the metrics computed and the analysis performed to answer the two research

questions in Table 3.

4.4 Replication Package
The data and code used in our study are made publicly available2. In particular, we provide: (i) all
the datasets, including all the classes subject of our study, (ii) the raw data generated to answer the
three research questions, (iii) the results of the tuning, and (iv) all the scripts and the programs
used. We do this to make the experiment fully replicable to foster future research in this field.

2https://dibt.unimol.it/report/bot-tosem/
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Table 3. Summary of the metrics computed and the analysis performed to answer the research questions.

Analysis Description Interpretation

R
Q
1

Correlation Pearson correlation coefficient. The higher, the better.

PRED(25) Percentage of predictions with a relative
error of 25%.

The higher, the better.

MSE Mean of the squared errors. The lower, the better.

Wilcoxon test Non-parametric comparison between
two distributions.

Significant if the p-value is lower or equal to 0.05.

Cliff’s 𝛿 Non parametric effect size. The higher, the larger the difference.

R
Q
2-
3 t-test (p-value) Parametric comparison between two dis-

tributions.
Significant if the p-value is lower or equal to 0.05.

Cohen’s d Parametric effect size. The higher, the larger the difference.
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Fig. 1. Tuning of 𝑘 and𝑊 parameters

5 EMPIRICAL STUDY RESULTS
In this section we discuss the results of our empirical study. Before answering our two research
questions, we show the results of the parameters’ tuning.

5.1 Parameter Tuning Results
PrEst. For computing PrEst we need to tune two parameters, 𝑘 and𝑊 . Fig. 1 shows how different
combinations of 𝑘 and𝑊 perform: we only show results for𝑊 ≤ 5, since greater values of𝑊
have worse results, in line with the trend depicted in Fig. 1. The best results (complete data in our
replication package) are for𝑊 = 0. This shows that the estimation of probabilities using operators
only, as done by Ferrer et al. [9], does not help our approach but, instead, it increases the error. The
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Table 4. Comparison between BRANCHOS and the baseline.

Correlation PRED(25) MSE Wilcoxon
test (p) Cliff’s 𝛿BRANCHOS Baseline BRANCHOS Baseline BRANCHOS Baseline

Netweaver 0.469 0.052 50.0% 38.7% 0.086 0.099 <0.001 0.166 (small)
Squirrel SQL 0.527 0.054 42.6% 23.6% 0.098 0.119 <0.001 0.197 (small)
SweetHome 3D 0.705 0.053 23.3% 23.5% 0.087 0.228 <0.001 0.393 (medium)
Vuze 0.592 0.080 45.1% 24.4% 0.098 0.139 <0.001 0.246 (small)
Freemind 0.472 0.031 25.8% 15.7% 0.153 0.238 <0.001 0.272 (small)
Checkstyle 0.648 0.033 30.6% 20.6% 0.090 0.164 <0.001 0.282 (small)
Weka 0.603 0.124 35.6% 38.2% 0.089 0.094 <0.001 0.055 (negl.)
Liferay 0.602 0.076 55.3% 12.0% 0.080 0.125 <0.001 0.432 (medium)
PDFsam 0.720 0.041 40.4% 14.6% 0.089 0.169 <0.001 0.360 (medium)
Firebird 0.730 0.083 59.7% 21.4% 0.067 0.091 <0.001 0.328 (small)

Average 0.622 -0.151 48.3% 18.6% 0.089 0.131 - -

best value for the 𝑘 parameter is 5, for which the approach achieves a slightly lower error compared
to other variants of the approach having𝑊 = 0. Such a quite large 𝑘 exponent drastically reduces
the weight of sequences that are substantially different from the one under test (see Section 3).
We also report some additional statistics for the best configuration of our approach, i.e., PrEst

(𝑊 = 0, 𝑘 = 5). The mean squared error is 0.138 and the PRED(25) is 18.2%. The error distribution
(𝑃 (𝑐)−𝑃 (𝑐)∗) of PrEst is, overall, symmetrical (skewness of 0.07, i.e., slightly skewed towards positive
values). This shows that the approach is accurate, although, on average, it slightly overestimates
the condition probabilities. Such results may seem not very encouraging, in absolute terms, since
in more than 80% of the cases the relative absolute error is greater than 25%. However, statically
estimating the probability of satisfying a condition is a very challenging task. Indeed, checking if a
branch is infeasible, which is an instance of the problem we try to solve, is an undecidable problem.
Therefore, considering the tackled problem, we think this is an acceptable result, although there is
still room for improvement.

As for the parameter required by the “Budget” approach [5], which provides the initial solution
for BOT, we found that the best value for 𝜖 is 20 (with a coverage of 1,721 branches). It is worth
noting that this is a third of the average class budget we use in our experiment (i.e., one minute).
Such a value is analogous to the value Campos et al. [5] used in their experiment (one minute for
an average class budget of three minutes).

5.2 RQ1: Coverage Prediction in Time
We show in Table 4 the comparison between BRANCHOS and the baseline we considered. The
mean squared error (MSE) achieved by BRANCHOS is always lower than the MSE achieved by the
baseline. The 𝑝-value of the Wilcoxon test comparing the MSE achieved by the two approaches is
always 0. This confirms that the difference is always statistically significant. The magnitude of the
differences is small in most of cases, with variations across the ten projects. For Liferay, SweetHome
3D, and PDFsam, the magnitude of the difference is medium, while it is negligible only for Weka.
In almost all systems but one the PRED(25) shows that the baseline makes larger errors. The

only exception is Weka, for which the PRED(25) of the baseline is slightly higher than the one
achieved by BRANCHOS. Finally, it is worth noting that the baseline has, on average, a very weak
correlation with the coverage. Indeed, the overall correlation is negative: this means that the higher
the predicted coverage value, the lower the actual coverage, when considering all the instances in
our dataset. On the other hand, BRANCHOS achieves, on average, a strong positive correlation
(∼0.62). To investigate more in-depth why BRANCHOS performs poorly on Weka, we report in
Table 5 the average value for the features we consider in BRANCHOS for all the projects. It is
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Table 5. The mean value of each feature we use in BRANCHOS for each project.

Project BCE BSD𝑚𝑎𝑥 BSD𝑎𝑣𝑔 #Branches Class Size #PrMethods #Fields #Parameters #Methods

Netweaver 0.42 0.09 0.02 30.71 371.04 0.46 5.33 17.12 11.64
Squirrel SQL 0.40 0.08 0.02 19.40 229.87 1.44 11.73 15.33 12.11
SweetHome 3D 0.35 0.14 0.02 99.65 901.87 5.31 24.96 33.95 38.26
Vuze 0.40 0.10 0.02 39.75 369.23 0.63 3.91 13.49 14.62
Freemind 0.37 0.10 0.02 28.08 293.56 1.50 17.72 17.91 14.30
Checkstyle 0.38 0.08 0.02 18.87 181.23 0.97 6.93 6.84 8.50
Weka 0.40 0.16 0.03 69.05 699.42 0.84 15.79 19.44 20.17
Liferay 0.42 0.07 0.01 14.74 230.59 0.22 4.61 16.04 14.72
PDFsam 0.39 0.10 0.02 22.14 282.58 0.78 17.57 11.94 8.66
Firebird 0.40 0.09 0.02 50.31 460.90 0.78 6.39 19.27 17.87
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Fig. 2. Two examples of prediction from the Liferay project. In the first one, BRANCHOS achieves an almost
perfect prediction of the actual coverage, while in the second one it underestimates it.

interesting to notice that, for Weka, the BSD𝑚𝑎𝑥 and BSD𝑎𝑣𝑔 metrics are higher than for the other
projects. Such a project contains a higher number of complex classes by nature since it is a toolbox
for machine learning, with many state-of-the-art algorithms implemented: it is likely that training
BRANCHOS on the other projects does not allow BRANCHOS to learn from enough complex
classes. As a result, BRANCHOS is not able to provide accurate estimations when it encounters
such classes.
Fig. 2 shows two examples of prediction for the project Liferay: At the top, a good prediction

done by BRANCHOS (class PortletPreferencesWrapper); At the bottom, a bad prediction (class
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ContactModelImpl). In the first case, BRANCHOS almost perfectly predicts the final coverage, but
it also approximates well the coverage achieved with intermediate search budgets. In the second
case, instead, BRANCHOS underestimates the coverage. This is probably due to the fact that some
metrics, like the number of branches (91) and the number of fields (64), both quite high, deceive the
regressor.
We also report in Fig. 4 the boxplot of the squared errors made by the two approaches when

considering the dataset as a whole (i.e., when merging all classes belonging to the ten systems
in a single dataset). The median of the distribution depicted for BRANCHOS (i.e., median=0.035)
confirms the good accuracy of our approach. An important point to stress here is the performance
achieved by the baseline. While it is clear that the baseline we exploited is trivial (i.e., for each
experimented search budget, the baseline predicts the mean branch coverage achieved across all
classes in the training set for that specific budget) it is worth noticing that: (i) BRANCHOS is the
first technique able to predict branch coverage in time (i.e., taking the search budget into account),
thus do not having any clear competitor; (ii) in our opinion, there is still value in showing that a
very simple and straightforward approach cannot be applied to solve a complex problem such as
the one we are tackling.
To understand the worth of the single metrics we considered, we built ten linear regression

models, one for each feature. For a given feature 𝑓 , the linear regression model 𝐿𝑓 use 𝑓 itself and
the progressive budget to predict the coverage. We trained and tested the model on the whole
dataset (without cross-validation) since in this case we are building a descriptive model rather than
a predictive one. We report in Table 6 the correlation achieved by the models, which indicates the
worth of each feature alone. As expected, the metrics specifically designed to achieve this goal
are the most important ones (BCE, BSD𝑚𝑎𝑥 , and BSD𝑎𝑣𝑔). Interestingly, the number of private
methods (#PrMethods) is, alone, more important than the total number of methods. Moreover, such
a metric appears to be more important than the number of fields and parameters, which intuitively
might appear as very correlated to the coverage that a test generation technique can achieve. This
probably happens because while, on the one hand, a test generation technique has full control on
parameters and some control on the fields, it has no direct control on private methods.
Finally, we wanted to check how the size of the training set influences the performance of

BRANCHOS. To do this, we first defined a test set composed by a stratified sample of 500 classes,
50 from each project. Then, we tried to sample different number of classes, ranging between 500
and 9500, with a step of 500 classes, from the remaining classes. For each sample, we trained
BRANCHOS and we tested it on the test set previously defined. Fig. 3 shows how the MSE changes
when the size of the dataset increases. Once reached the 5,000 classes mark, the improvement
achieved by adding more classes is very small, i.e., the MSE is always around 0.075. This suggests
that increasing even further the number of classes may have a limited effect on the performance of
BRANCHOS.

Summary for RQ1: In general, while the outcome of the comparison with the trivial baseline
was quite expected, the results achieved by BRANCHOS are still satisfactory, with a correlation
on the overall dataset of ∼0.62, and a median squared error of 0.035.

5.3 RQ2: Adaptive Budget Allocation in the Ideal Scenario
Table 7 reports the project-level branch coverage achieved by the algorithm with an ideal coverage
prediction approach (BOTIdeal), the one with the best prediction approach available (BOTBRANCHOS)
and the two baselines. We discuss the results obtained by BOTBRANCHOS in the next subsection.
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Fig. 3. Analysis of the variation of the mean squared error (y-axis) when the dataset size (x-axis) increases.
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Fig. 4. Distribution of the squared errors by BRANCHOS and the baseline for the prediction in time (without
outliers).

Table 6. Ranked worth of single metrics measured through the correlation between the branch coverage
and linear regression models that used each feature in isolation and the progressive budget as independent
variables and the coverage as dependent variable. The direction indicates the sign of the coefficient determined
for the feature (△: positive, ▽: negative).

Metric Direction Correlation

BCE △ 0.4719
BSD𝑚𝑎𝑥 ▽ 0.3901
BSD𝑎𝑣𝑔 ▽ 0.3671
#Branches ▽ 0.3004
Class Size ▽ 0.2819
#PrMethods ▽ 0.2379
#Fields ▽ 0.1705
#Parameters ▽ 0.1197
#Methods ▽ 0.1036

First, it is worth noting that the “Budget” approach [5] always achieves a higher coverage compared
to the “Simple” approach. This confirms the result achieved by Campos et al. [5]. BOTIdeal allows to
improve the branch coverage at project level for all the projects we took into account. On average,
we obtained an improvement of ∼3.6% of the branch coverage. The project for which we obtained
the lowest relative improvement was Liferay: BOTIdeal allows to cover 0.93% that the “Budget”
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approach could not cover. While this value is relatively small, it is worth noting that, in absolute
terms, this means that our approach allows to cover 754 additional branches compared to the
“Budget” approach. On the other hand, the project for which BOTIdeal allows to achieve the best
relative improvement is SweetHome 3D: in this case, our approach allows to cover 11.37% additional
branches (390 in absolute terms).
The difference between the two approaches we compared is significant for all the projects.

Besides, the effect size shows that the difference is never negligible: it is small for three projects
out of nine, and large for six projects out of nine.

We also checked the difference of coverage at class level. Most of the classes (7,975) achieve the
exact same coverage when using both the approaches. BOTIdeal allows to increase the coverage of
1,592 classes (16.6%), while the “Budget” approach achieves a higher coverage for a single class, i.e.,
AssociatorEvaluation from Weka. This happens because BOTIdeal prefers to sacrifice a branch
from such a class to cover more branches of another class at some step.

We report the results of the mutation analysis in Table 8. BOTIdeal is always able to kill a higher
number of mutants compared to the Budget approach, except for one project (Weka). BOTIdeal kills
a significantly higher number of mutants for five projects out of nine. For Weka, the difference is
significant in favour of the baseline. For all the differences, even the ones for which we could not
achieve statistically significant results, the effect size is large. We tried to understand why for such
a project the Budget approach is able to kill a higher number of mutants. We found that Evosuite
crashed on 12 classes for at least one of the approaches: BOTIdeal allocated a high budget on ten of
such classes (219 seconds each, on average) and, therefore, it “lost” such a budget. In total, for Weka,
BOTIdeal used a budget 995 seconds (i.e., 16 minutes) lower. On average, despite such a peculiar
case, BOTIdeal allows to kill 3.3% more mutants compared to the baseline.

Summary for RQ2: an ideal version of BOT would allow to allocate the budget better than
the two baselines, generating tests covering, on average, 3.6% more branches, killing 3.3%
more mutants, and improving the coverage of 16.6% of the classes.

5.4 RQ3: Adaptive Budget Allocation with BRANCHOS
Like we did for RQ2, we report in Table 7 also the results achieved by BOTBRANCHOS, i.e., the BOT
algorithm that uses the best branch coverage prediction approach available, i.e., BRANCHOS. We
underline the results achieved by the best realistic approach.
It can be noticed that BOTBRANCHOS, as expected, always performs worse than its ideal form

because of the prediction errors made by BRANCHOS. However, BOTBRANCHOS still allows to
improve the project coverage of most of the projects (seven out of nine) compared to the best
baseline, i.e., the “Budget” approach [5]. The opposite happens just for two projects: Neatweaver
and Checkstyle. For the former, the “Budget” approach only covers 8 additional branches, while for
the latter such a difference is even smaller (2 branches). Indeed, the effect size is negligible and not
significant in both the cases.
The project that obtained the smallest relative improvement is Freemind (0.12%, i.e., only five

additional branches covered), while the project that would benefit the most from BOTBRANCHOS is,
again, SweetHome 3D (3.0%, i.e., 103 additional branches). In general, the improvement is consistent
for all the projects, but it is smaller than the one achieved in the ideal scenario: the average relative
improvement is only 0.76%.
In this realistic scenario, the difference is statistically significant only for three projects out

of nine, i.e., SweetHome 3D, Weka (+1.6% coverage, i.e., 511 additional branches), Vuze (+0.95%
coverage, i.e., +288 additional branches). Only in such cases, the effect size is large, while in the other
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Table 7. Comparison between the branch coverage achieved by the approaches at project-level. We report in
boldface the result of the best approach, while we underline the results of the best realistic approach (i.e., ex-
cluding BOTIdeal) for each project. We also report the statistical comparison between BOTIdeal/BOTBRANCHOS
and the best baseline (Budget [5]) over five runs (significant results in bold), along with the effect size (Cohen’s
d) and its magnitude (Negligible, Small,Medium, or Large).

Project Covered Branches BOTBRANCHOS vs Budget BOTIdeal vs Budget
BOTIdeal BOTBRANCHOS Budget [5] Simple [5] t-test (p) Cohen’s d t-test (p) Cohen’s d

Netweaver 6,125.6 6,088.8 6,096.4 5,911.2 0.037 -0.11 (N) 0.022 0.47 (S)
Squirrel SQL 11,810.2 11,688.6 11,651.4 11,339.0 0.104 0.05 (N) 0.008 0.21 (S)
SweetHome 3D 3,818.0 3,531.8 3,428.2 3,332.0 0.018 2.29 (L) 0.001 5.81 (L)
Vuze 31,670.4 30,458.6 30,170.8 28,751.2 <0.000 1.69 (L) <0.001 9.01 (L)
Freemind 3,833.8 3,749.2 3,744.6 3,636.4 0.649 0.11 (N) <0.001 2.36 (L)
Checkstyle 1,098.8 1,077.2 1,079.4 1,079.6 0.444 -0.04 (N) 0.001 0.36 (S)
Weka 33,717.2 32,363.6 31,852.6 30,659.6 <0.000 4.93 (L) <0.001 12.05 (L)
Liferay 81,960.8 81,355.8 81,206.6 79,809.0 0.010 0.27 (S) 0.001 1.37 (L)
Firebird 4,634.0 4,548.0 4,504.6 4,182.8 0.001 0.77 (M) 0.002 1.88 (L)

cases it is negligible (four out of nine), small or medium (one project each). While the percentage
of improvement is small, it is worth highlighting that BOTBRANCHOS allows to cover 1,127 branches
that could not be covered using the “Budget” approach.

Also in this case we checked the difference of coverage at class level. Again, most of the classes
(8,352) achieve the exact same coverage when using both the approaches. BOTBRANCHOS allows to
increase the coverage of 730 classes (7.6%), while the “Budget” approach achieves a higher coverage
for a 486 classes (5.0%). We tried to understand the characteristics of such classes: we found that
the classes for which BOTBRANCHOS achieves a higher coverage are generally bigger in terms of
number of branches (∼96 branches, on average) compared to both the ones for which the “Budget”
approach achieves a higher coverage (∼55 branches, on average) and the ones for which the two
approaches achieve the same coverage (∼ 31 branches, on average).
Finally, Table 8 shows the number of mutants killed by our approach and the Budget approach.

The tests generated with BOTBRANCHOS allow to kill a higher number of mutants for all the projects
as compared to the baseline. Besides, the number of mutants killed is significantly higher for five
projects out of nine. On average, BOT is able to kill 3.0% more mutants compared to the baseline.
This shows that the approximation of the ideal BOT we defined is able to achieve a result close to
the one achieved by the ideal version.

Summary for RQ3: BOTBRANCHOS allocates the budget better slightly than the two baselines,
generating tests covering 0.76% more branches and killing 3.0% more mutants.

5.5 Discussion
The results of our experiments show that both the approaches we introduced, i.e., BRANCHOS and
BOT, allow to improve the baselines we considered (RQ1 and RQ2). However, when we tried to
combine them to understand the actual improvement that BOT can have in a real usage scenario, we
found that such an improvement is quite slim. These results show how important is to accurately
predict the branch coverage in time: while BRANCHOS is the best coverage prediction approach we
experimented with, it is still insufficient to unleash the full potential of the optimization algorithm
we introduced, BOT. Still, it allows to improve by 3.0% the average number of mutants killed by
generated tests: this shows that, while there is still margin for improvement, our approach could be
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Table 8. Comparison between the number of mutants killed by the approaches at project-level. We report in
boldface the result of the best approach for each project. We also report the statistical comparison between
BOTIdeal/BOTBRANCHOS and the best baseline (Budget [5]) over five runs (significant results in bold), along
with the effect size (Cohen’s d) and its magnitude (Negligible, Small, Medium, or Large).

Project Killed Mutants BOTBRANCHOS vs Budget BOTIdeal vs Budget
BOTIdeal BOTBRANCHOS Budget [5] t-test (p) Cohen’s d t-test (p) Cohen’s d

Netweaver 6,278.5 6,331.8 6,230.5 0.005 1.70 (L) 0.084 1.08 (L)
Squirrel SQL 19,474.3 19,586.4 18,937.3 0.021 1.46 (L) 0.001 2.40 (L)
SweetHome 3D 4,040.0 3,707.0 3,597.1 0.147 1.03 (L) <0.001 5.68 (L)
Vuze 42,294.4 43,229.1 41,546.8 0.002 2.39 (L) 0.047 0.88 (L)
Freemind 5,170.6 5,017.5 4,793.6 0.047 0.91 (L) <0.001 1.92 (L)
Checkstyle 785.3 761.7 751.9 0.694 0.32 (S) 0.114 0.98 (L)
Weka 36,421.5 37,778.5 37,651.4 0.444 0.27 (S) 0.012 -1.97 (L)
Liferay 83,307.3 83,587.4 81,883.8 0.004 2.00 (L) 0.016 1.47 (L)
Firebird 8,018.3 8,084.8 7,735.7 0.064 1.50 (L) 0.090 1.13 (L)

useful in practice. Future research should aim at improving the coverage prediction accuracy since
this is crucial for achieving a higher coverage at project-level. To foster future studies in this field
and to allow future researchers to tackle this problem without the cost of running a search-based
test case generation tool, we release all the material we used to run the experiments, including
the results of the 54,697 runs of EvoSuite in which we observed the coverage for every second of
execution of the tool for 300 seconds (for a total of 15.2M data-points). Future researchers can use
our datasets to device better prediction models and test BOT.

Our future work include the integration of BOT in EvoSuite to make it an easier-to-use tool for
practitioners.

6 THREATS TO VALIDITY
Construct Validity. Threats to construct validity are mainly related to the measure of the coverage
we consider in our study.

We run EvoSuite on each class only once. Since the technique we use is stochastic, the level of
coverage measured in different runs may vary. Given the particularly time-consuming task, we
had to balance the effort to spend in terms of (i) the search budget to assign to each class, (ii) the
number of classes to test and (iii) the number of runs for each class. Using a large search budget, in
our context, was a strict requirement needed to predict how the coverage increases over time and
also to make sure that the BCE metric would not be penalized, since we expect it to correlate with
the “maximum” coverage that can be reached by search-based testing algorithms on a given unit to
test. We chose 300 seconds, which, in automated test case generation, is a quite high budget (e.g.,
the default budget used by EvoSuite is 60 seconds).
Having clarified that saving time on the assigned budget was not an option, the two other

factors influencing the execution time were the number of classes and the number of runs per
class. Given a number of runs 𝑅 for each class, the number of classes analyzable in a fixed amount
decreases with the increase of 𝑅. For example, two runs would have required to halve the number
of classes we considered in our study assuming a fixed amount of time available. The number of
runs suggested in this context is 30 [1]. To estimate the difference among runs and to assess the
possible bias introduced by our choice of maximizing the number of tested classes rather than the
number of runs per class, we tried to run EvoSuite 10 times on the 10 largest classes in terms of
number of branches from our dataset. As done in our study, we considered the coverage achieved
given a search budget varying from 1 to 300 seconds at steps of 1 second. Given the same class
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under test and the same level of budget (e.g., 25 seconds), the maximum absolute variation we
observed is 0.035. This means that two different runs on the same class and with the same budget
achieved a difference on coverage of at most ∼ 4%. When considering only the final coverage (i.e.,
the one achieved after 300 seconds), the mean absolute variation is 0.002 and the maximum absolute
variation is 0.016 (i.e., meaning less than 2%).

Internal validity. Threats to internal validity concern internal factors of our study that could
hinder its validity. The main threat of this category is the choice of the machine learning technique
to use for our approach. We choose Random Forest [4], since it performed better than others we
tested (linear regression, REPTree from Weka [14] and a Multilayer Perceptron [16]), without
requiring an unreasonable amount of training time (about 40 minutes for each fold). However, this
does not exclude that using other more expensive techniques, such as deep neural networks (DNN)
or support vector machines (SVM), would result in better predictions.
Another problem related to the use of machine learning is the possibility of over-fitting. We

limited this risk experimenting our techniques in a cross-project scenario, i.e., with training data
completely separated from test data. We performed statistical analysis (Wilcoxon test and effect
size) to measure the difference in terms of error of the models we compared, to exclude that the
differences in the prediction error between BRANCHOS and the baselines is achieved by chance.

It can be argued that using BOT requires time-intensive operations (e.g., training of the classifier)
that would make it not useful in practice. We release the training set we built for BRANCHOS so
that it is possible to use our classifier out-of-the-box, without the need to perform further training.
Since the optimization step requires some time, we removed such overhead from the project-level
search budget to divide, in order to test the approach in a realistic scenario. Anyway, we found that
the time needed to optimize the search budget is generally very low. Finally, we used Evosuite to
compute the strong mutation score for the techniques we compared. For some of the combination
class-budget we provided as input to the tool, it crashed with a NullPointerException. Therefore,
we had to ignore such classes. This, however, could negatively impact the results. We computed the
search budget used for the classes for which we have the result for each approach and we found
that the baseline used, in total, a higher amount of search budget: BOTIdeal and BOTBRANCHOS used
0.14% (∼ 1 hour and 7 minutes) and 0.10% (∼ 47 minutes) less budget, respectively. This allows us
to conclude that the actual improvement may be slightly higher than the one we reported, mostly
in the cases in which classes with high budget were not considered, such as the case of Weka for
BOTIdeal already discussed in the results.

External validity. Threats to external validity concern the generalization of our findings. To
limit the risk of taking into account classes not representative enough of a typical software project,
we answered RQ1 and RQ2 by taking into account all the classes from the studied projects.

We did not pick a sample of the classes to have a larger dataset from which BRANCHOS could
extract knowledge and to have a better assessment of what would be the performance of the
compared approaches in a real scenario.

Another possible threat to the generalizability of our findings is that we used only a search-based
test case generation approach (i.e., MOSA [24]) implemented in one tool (EvoSuite). It is possible
that for different techniques/tools (such as Randoop) the results would be different. Also, it is
worth noting that BRANCHOS and BOT are mainly designed to work on search-based test case
generation techniques: it may not be possible to use them on top of inherently different techniques,
such as dynamic symbolic execution. Replication will be devoted to corroborate our findings.
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7 CONCLUSION AND FUTUREWORK
We presented BOT, an approach to optimize the project-level branch coverage by adaptively
distributing the global search budget defined at project level among the classes in the context of
search-based test case generation. BOT uses a search algorithm and BRANCHOS, the first approach
that predicts the branch coverage achieved by an automatic search-based test case generation
approach on a given class with a given search budget (expressed as seconds). Such an approach
uses machine learning to train a regressor using as features structural metrics and the assigned
search budget.
We experimented both BRANCHOS and BOT, and we compared them to three baselines. The

results indicated that (i) BRANCHOS is able to overcome its baseline in terms of coverage prediction
error in time, (ii) using BOT with an ideal coverage prediction approach to optimize the search
budget allocation it would be possible to improve the project-level branch coverage by 3.6% and the
number of killed mutants by 3.3%, on average, and (iii) combining BRANCHOS and BOT allows to
achieve a limited improvement in terms of branch coverage and a quite substantial improvement in
terms of number of killed mutants.
Even if the results are encouraging, there is still much room for improvement, mostly in terms

of coverage prediction. For this reason, we release our dataset to facilitate future research in this
field. We will investigate the definition and inclusion in BRANCHOS of other structural metrics
to improve its prediction power and the overall accuracy of BOT . Finally, a next step will be to
integrate BOT in EvoSuite to build a fully budget-aware test case generation tool that can be
simply used on whole projects. The BRANCHOS model built on the training set we used in this
paper could be adopted as is, i.e., without the necessity of gathering more data. In other words, this
means that running BOT in practice would require virtually no effort by the developers.
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