
Vol.:(0123456789)

https://doi.org/10.1007/s10664-023-10365-0

1 3

Using gameplay videos for detecting issues in video games

Emanuela Guglielmi1 · Simone Scalabrino1 · Gabriele Bavota2 · Rocco Oliveto1

Accepted: 27 June 2023 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Context The game industry is increasingly growing in recent years. Every day, millions of
people play video games, not only as a hobby, but also for professional competitions (e.g.,
e-sports or speed-running) or for making business by entertaining others (e.g., streamers).
The latter daily produce a large amount of gameplay videos in which they also comment
live what they experience. But no software and, thus, no video game is perfect: Streamers
may encounter several problems (such as bugs, glitches, or performance issues) while they
play. Also, it is unlikely that they explicitly report such issues to developers. The identified
problems may negatively impact the user’s gaming experience and, in turn, can harm the
reputation of the game and of the producer.
Objective In this paper, we propose and empirically evaluate GELID, an approach for
automatically extracting relevant information from gameplay videos by (i) identifying
video segments in which streamers experienced anomalies; (ii) categorizing them based on
their type (e.g., logic or presentation); clustering them based on (iii) the context in which
appear (e.g., level or game area) and (iv) on the specific issue type (e.g., game crashes).
Method We manually defined a training set for step 2 of GELID (categorization) and a
test set for validating in isolation the four components of GELID. In total, we manually
segmented, labeled, and clustered 170 videos related to 3 video games, defining a dataset
containing 604 segments.
Results While in steps 1 (segmentation) and 4 (specific issue clustering) GELID achieves
satisfactory results, it shows limitations on step 3 (game context clustering) and, above all,
step 2 (categorization).

Keywords Video games · Gameplay videos · Mining software repositories

1 Introduction

Video games are becoming an increasingly important form of expression in Today’s cul-
ture. Their sociological, economic, and technological impact is well recognized in the lit-
erature (Jones 2008) and their wide diffusion, particularly among the younger generations,

Communicated by: Jin Guo, Raula Gaikovina Kula

This article belongs to the Topical Collection: Special Issue on Registered Reports

 * Emanuela Guglielmi
 emanuela.guglielmi@unimol.it
Extended author information available on the last page of the article

Published online: 7 October 2023

Empirical Software Engineering (2023) 28:136

http://orcid.org/0000-0002-5443-1303
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10365-0&domain=pdf

1 3

has contributed to the growth of the gaming industry in several directions. Playing video
games is progressively becoming a work for many: Some play for professional competitions
(e.g., in e-sports or speed-running), while others play to entertain others (e.g., streamers)
especially on dedicated platforms such as Twitch.1 Besides all challenges that are common
to software systems, developing and maintaining video games pose additional difficulties
related to complex graphical user interfaces, performance requirements, and higher testing
complexity. Concerning the latter point, games tend to have a large number of states that
can be reached through different choices made by the player. In such a context, writing
automated tests is far from trivial due to the need for an “intelligent” interaction triggering
the states exploration. Even assuming such ability to explore the game space, determining
what the correct behavior is in a specific state usually requires human assessment, with the
exception of bugs causing the game to crash. Finally, additional complexity is brought by
the non-determinism that occurs in games because of multi-threading, distributed comput-
ing, artificial intelligence and randomness injected to increase the difficulty of the game
(Murphy-Hill et al. 2014).

Because of the few automated approaches available for quality control in video game
development (Santos et al. 2018), many games are released with unknown problems that
are revealed only once customers start playing (Truelove et al. 2021). Since many stream-
ers daily publish hours of gameplay videos, it is very likely that some of them experience
such issues and leave traces of them in the uploaded videos. For example, a gameplay
video on the game Cyberpunk 20772 shows that the game crashes as soon as the player per-
forms a specific action. The large amount of publicly available gameplay videos, therefore,
might be a goldmine of information for developers. Indeed, such videos not only contain
information about which kinds of issues affect a video game, but they also provide exam-
ples of interactions that led to the issue in the first place, allowing its reproduction. In their
seminal work on this topic, Lin et al. (2019) defined an approach able to automatically
identify videos containing bug reports. However, such an approach mostly relies on the
video metadata (e.g., its length) and it is not able to pinpoint the specific parts of the video
in which the bug is reported. This makes it unsuitable as a reporting tool for game develop-
ers, especially when long videos, which are not uncommon, are spot as bug-reporting.

In this paper, we introduce GELID (GamEpLay Issue Detector), an automated approach
that aims at complementing the approach by Lin et al. (2019) by (i) automatically extract-
ing meaningful segments of gameplay videos in which streamers report issues, and (ii)
hierarchically organize them. Given some gameplay videos as input, GELID (i) partitions
them into meaningful segments that might contain bug reports, (ii) automatically distin-
guishes informative segments from non-informative ones by also determining the type of
reported issue (e.g., bug, performance-related), (iii) groups them based on the “context”
in which they appear (i.e., whether the issue manifests itself in a specific game area), and
(iv) clusters fragments related to the same specific issue (e.g., the game crashes when a
specific item is collected).

We evaluate the four components of GELID in isolation, to understand to what extent
it is possible to achieve the single goals we set, as we planned in our registered report pre-
sented at MSR 2022 (Guglielmi et al. 2022). We first extract training data for the machine
learning model we use to categorize segments (step 2 of GELID). To this end, we used the

1 https:// twitch. tv
2 https:// youtu. be/ ybvXz SLy9Ew? t= 1448

136 Page 2 of 32 Empirical Software Engineering (2023) 28:136

https://twitch.tv
https://youtu.be/ybvXzSLy9Ew?t=1448

1 3

approach by Lin et al. (2019) to identify candidate videos from which we can manually
label segments in which the streamer is reporting an issue. Then, we ran GELID on a set
of real gameplay videos and validate its components. First, we manually determine to what
extent the extracted segments are usable, by annotating their interpretability (i.e., they
can be used as standalone videos) and atomicity (i.e., they can not be further split). Sec-
ond, we validate the categorization capabilities of GELID, both when trying to distinguish
non-informative segments from informative ones (binary classification) and when trying
to pinpoint the specific issue among logic, performance, presentation, balance, and non-
informative through a multi-class classifier. To this and, we compute typical metrics used
to evaluate ML models (i.e., accuracy and AUC). Finally, we evaluate to what extent the
clusters identified in terms of context and specific issues are similar to the manually deter-
mined ones using the MoJoFM metric (Wen and Tzerpos 2004).

The remainder of this paper is organized as follows. In Section 2 we present the back-
ground needed for understanding the paper and some related work, based on which we
also define the four specific categories of issues that GELID will identify. In Section 3, we
present GELID and its four components in details. In Section 4 we describe the empirical
study design, while in Section 6 we report the obtained results. In Section 7 we discuss the
results, while in Section 8 we report the threats to validity. Section 9 concludes the paper.

2 Background and Related Work

The large efforts that game developers invest in the game development process do not
always allow them to discover or fix all the bugs in a game before releasing it to the market.
Several works have focused the attention on the quality assurance of video games analyzing
the differences between traditional software development and video games development
(Murphy-Hill et al. 2014; Santos et al. 2018). Many studios employ discussion forums or
specific features in their games for gamers to report bugs (e.g., Steam Community). Pre-
vious work shows that 80% of the Steam games release urgent updates to fix issues such
as feature malfunctions or game crashes (Lin et al. 2017). The large amount of gameplay
videos continuously produced and publicly released by many gamers on platforms such as
Twitch and YouTube could be helpful to developers: Sometimes, gamers indirectly report
issues while they play. Since GELID aims to support video game developers by extracting
information from gameplay videos, the discussion focuses mainly on approaches aimed at
extracting and manipulating gameplay videos for different purposes. In addition, since our
approach aims to automatically categorize video segments, we also discuss existing tax-
onomies of video game topics that we use as a starting point for defining our categories.

2.1 Mining of Gameplay Videos

Some works targeted the automated generation of a comprehensive description of what
happens in gameplay videos (i.e., game commentary). Examples of these works are the
framework by Guzdial et al. (2018) and the approach presented by Li et al. (2019) mod-
eling the generation of commentaries as a sequence-to-sequence problem, converting video
clips to commentary. On the same line of research, an approach to generate automatic com-
ments for videos by using deep convolutional neural networks was presented by Shah et al.
(2019). Lewis et al. (2010) described the gameplay videos as “a rich resource.” The main
goal of GELID is to detect issues in gameplay videos. To the best of our knowledge, the

Page 3 of 32 136Empirical Software Engineering (2023) 28:136

1 3

only work aimed at achieving a similar goal is the one by Lin et al. (2019). The authors
conducted an in-depth study of gameplay videos posted by players on the Steam plat-
form aiming at automatically identifying the ones that report bugs. They observe that
nave approaches based on keywords matching are inaccurate. Therefore, they propose an
approach that uses a Random Forest classifier (Ho 1995) to categorize gameplay videos
based on their probability of reporting a bug. Lin et al. (2019) rely on Steam3 to find videos
related to specific games. While Steam is mainly a marketplace for video games, it also
allows users to interact with each other and share videos. On a daily basis, for 21.4% of the
games on Steam, users share 50 game videos, and a median of 13 h of video runtime Lin
et al. (2019). Still, their approach works at video-level, and manually watching long game-
play videos classified as buggy still requires a considerable manual effort since a whole
video can even last several hours. Also, they only distinguish bug-reporting videos from
non-bug-reporting ones, without a more specific classification regarding the type of issue
reported (e.g., glitch or logic bug). We fill this gap and further aid developers by classify-
ing the video segment according to the type of problem encountered, and by trying to clas-
sify video segments (i.e., parts of videos) instead of whole videos. To achieve this goal,
GELID augments the provided information, by including also (i) the type of issue found,
(ii) the context (i.e., area of the game) in which it occurred, and (iii) other segments in
which the same issue was reported (possibly from different videos).

2.2 Taxonomies of Video Game Issues

Video games can suffer from a vast variety of problems. Lin et al. (Lin et al. 2019) do not
distinguish among the types of issues reported in the videos identified as “bug reporting”,
while this is one of our goals.

To determine meaningful categories in which it is worth categorizing video segments,
we rely on a recent taxonomy of issues in video games introduced by (Truelove et al. 2021)
(which extends the one by (Lewis et al. 2010)). In their taxonomy, the authors reports 20
different kinds of issues.

We use such a taxonomy as a base to define the labels we want to assign to the video
segments. However, all such labels might be counterproductive since it is likely to observe
a long-tail distribution (i.e., a few types of issues appear in most of the video fragments,
while several other issues are quite rare or do not even appear). Therefore, starting from
such a taxonomy, we define macro-categories by clustering similar fine-grained catego-
ries. We identified four labels, as reported in Table 1: Logic, Presentation, Balance, and
Performance.

3 GELID

GELID takes as input a set of gameplay videos related to a specific video game and returns
a hierarchy of segments of gameplay videos organized on three levels: (i) context (e.g.,
level or game area), (ii) issue type (e.g., bug or glitch), and (iii) specific issue (e.g., game
crashes when talking to a specific non-player character).

3 https:// steam commu nity. com/

136 Page 4 of 32 Empirical Software Engineering (2023) 28:136

https://steamcommunity.com/

1 3

Figure 1 shows an overview of the GELID workflow. We describe below in more detail
the main steps of GELID.

3.1 Video Segmentation

The first step of GELID consists in partitioning the video into meaningful segments that
can be later analyzed as standalone shorter videos. In the computer vision literature, a simi-
lar problem is referred to as “shot transitions detection” Souček and Lokoč (2020). The
aim is to detect sudden changes in the video content. An example of approaches defined
to solve such a problem is the one introduced in (Tang et al. 2018). Video-related informa-
tion, however, might not be sufficient to find cuts in gameplay contents. In the context of
video segmentation, relying only on scene changes to identify meaningful segments may
not be sufficient. Scene changes may be due to various minor factors, e.g., rapid zoom into
the viewfinder of a weapon and then back to the general framing of the scene. Such situa-
tions do not provide significant information for identifying potential issues. Furthermore,
in some contexts, scene changes may not be evident, leading to the creation of very large
segments that are difficult to analyse. Let us consider, for example, the gameplay video
available at https:// www. youtu be. com/ watch? v=_ kQIJ2 Omy9w: From 14:10 to 15:56 there
is no shot transition, even though various separate events and actions occur. Moreover, for
example, if the game crashes and a shot transition detection approach is used to cut the
video, the second in which the crash happens would probably be selected for segmentation.
The streamer, however, might need a few seconds to react to such an event by commenting

Table 1 Mapping between types of issues identified by GELID and categories from the taxonomy by True-
love et al. (Truelove et al. 2021)

Issue Type Description Categories (Truelove et al. 2021)

Logic Issues related to the game logic, regardless of how infor-
mation is presented to the player

Object Persistence
Collision of Objects
Inter. btw. Obj. Prop
Position of Object
Context State
Crash
Event Occurrence
Interrupted Event
Triggered Event
Action
Value

Presentation Issues related to the game interface (graphical- or audio-
related)

Game Graphics
Information
Bounds
Camera
Audio
User Interface

Balance Detrimental aspects in terms of “fun” Artificial Intelligence
Exploit

Performance Performance-related issues (e.g., FPS drops) Implem. Response

Page 5 of 32 136Empirical Software Engineering (2023) 28:136

https://www.youtube.com/watch?v=_kQIJ2Omy9w

1 3

what happened providing useful information for the game developers. Thus, by using shot
transitions as cut points, the spoken content related to the issue might be erroneously put
in the subsequent segment. To solve this problem, we decided to mainly rely on the spoken
content to decide the cut points in the video: The core idea is to get the points in which
each subtitle entry (i.e., units of text shown on the screen) begins and ends, slightly shifted
by t seconds (where t is a parameter of the approach) to take into account the reaction time
of the streamer, and thus consider the video in-between as a segment. As for the shifting
operation, given a subtitle entry that starts at second s and ends at second s + d (where d
is the duration of the subtitle entry), our approach will extract the video segment between
max(s − t, 0) and min(s + d + t, videolength) . For example, consider the case where we set
t = 5 and we detect a subtitle entry that starts at 13:45 (mm:ss) and lasts 3 s. Our approach
will cut the video between 13:40 and 13:52. We report in Section 4 how we tune the t
parameter.

As a result, our segmentation approach will implicitly discard some parts of the input
video (i.e., the ones in which the streamer is not speaking) and it might put some parts of
the video in many segments when t > 0 (e.g., for contiguous subtitle entries). Also, it is
worth noting that using this strategy might result in a very high number of extracted seg-
ments for each video since subtitle entries generally include only parts of a sentence: In
subtitles, a given sentence is broken into several entries to allow the watcher to comfort-
ably read each of them. To preliminarily exclude segments that most likely do not contain
any piece of useful information and, thus, to reduce the effort for the next step, we use a
keyword-matching approach. If at least a relevant keyword is found in the subtitle entry
related to a given segment, we consider the segment, while we exclude it otherwise.

To define the list of keywords, we relied on (i) the 12,122 change notes of video games
used by Truelove et al. (2021) to define the taxonomy of the most frequently encountered
problems in video games and (ii) the 996 titles and descriptions of the gamplay videos in

Fig. 1 The workflow of GELID

136 Page 6 of 32 Empirical Software Engineering (2023) 28:136

1 3

the dataset defined by Lin et al. (2019). One of the authors manually extracted, from each
instance, a first set of keywords (also composed by more than a word) which were related
to issues in video games (e.g., “glitch” or “bug”). As a result of this process, 161 basic
keywords were identified the file containing the selected keywords is reported in the repli-
cation pacakage (Guglielmi et al. 2023). From such keywords, we automatically generated
new semantically equivalent keywords to have a broader dictionary. To do that, we first
tokenized the keywords and automatically tagged the Part-of-Speech (PoS) by using the
spaCy Python package (Python 2023b). Then, for each token with its PoS tag, we used
both WordNet (Miller 1995) and SEWordSim (Tian et al. 2014) to generate both general-
purpose and domain-specific synonyms of each word. At this point, for each keyword
composed by the sequence of words ⟨w1,… ,wn⟩ , we combined all the synonyms of each
word and generated the new set of candidate keywords by using the Cartesian product:
{syn(w1) ×⋯ × syn(wn)} . For example, given the initial keyword “lag”, we generated the
candidate alternative keywords “stuttering”, “FPS drop”. From the initial 161 identified
keywords, we obtained a total of 207 candidate keywords. Then, two of the authors inde-
pendently validated the new keywords to discard the ones that were not related to issues in
video games. In case of disagreement, they discussed to reach consensus. In the end, we
added 96 new keywords, while 111 were discarded. In our analysis, we assessed the inter-
rater reliability between the annotators involved in identifying keywords by calculating
Cohen’s Kappa coefficient. The obtained results indicate an agreement level of k = 0.74 .
The coefficient value of 0.74 indicates a good level of agreement between the annotators
in terms of identifying the keywords. For example, the keyword “crash” generated from
“break up” was discarded. Thus, our final list of keywords is composed of 257 keywords
which can be mapped to our replication package (Guglielmi et al. 2023).

3.2 Segment Categorization

In this second step, GELID aims at categorizing segments based on their content. GELID
considers five labels: One for non-informative segments (i.e., the ones not reporting
issues), and four for informative segments (i.e., the ones reported in Table 1). Non-inform-
ative segments are discarded and not considered in the next steps.

Previous work successfully used machine-learning to solve similar classification prob-
lems in the context of mobile app reviews (Chen et al. 2014; Scalabrino et al. 2017). Such
approaches mainly rely on textual features. In our context, we can extract information that
could also help to correctly classify segments from video analysis. For example, segments
without video might be more likely to be non-informative, even if a reader comment is
present. Therefore, we include in GELID also video-based features. More specifically,
we extract five sets of features: Three of them only based on the subtitles (i.e., what the
streamer says), one of them based on the video (i.e., what happens in the game), and one
of them including the best set of textual features and the set of video-based features.

Textual Features As for the textual features, we consider Bag of Words (BoW) (Zhang
et al. 2010), doc2vec (d2v) (Karvelis et al. 2018) and word2vec (w2v) (Rong 2014). BoW
consists in detecting the dictionary of the training set and using each word of the diction-
ary as a feature. The value of each feature for a given instance corresponds to the number
of times the related word appears in an instance. The number of features directly depends
on the training set. In our case, given the training set described in Section 4.1, we extracted
2,253 features. The d2v model (Karvelis et al. 2018) allows to automatically extract a

Page 7 of 32 136Empirical Software Engineering (2023) 28:136

1 3

vector of features for an entire instance (document). Such a model allows to automatically
represent a document (sequence of words) as a vector. Specifically, we represent each sub-
title string for each identified segment as a vector composed of 40 features since this is the
default number of features extracted by such a model (Karvelis et al. 2018). Finally, the
w2v model (Rong 2014) allows to represent a single word as a set of features. Thus, dif-
ferently from doc2vec, it does not directly work at document-level. To define the features
based on w2v, given all the words in a given instance, we extract the vectors through the
w2v model and we compute the average of each feature. In this case, we represent each
word as a vector of 300 features, again, because the w2v model extracts by default such a
number of features (Rong 2014).
Video‑based Features With video-based features, instead, we mainly wanted to repre-
sent to what extent the video contains unexpected frames that could possibly be related
to issues. To this aim, given each pair of subsequent frames fi and fi+1 : (i) we compute
their structural similarity through SSIM (Wang et al. 2004), i.e., si = SSIM(fi, fi+1) ; (ii) we
extract their HSV histograms using the HISTCMP CORREL function of OpenCV Python
(2023a), thus obtaining h(fi) and h(fi+1) ; (iii) we then compute their Pearson correlation
coefficient hsvi = cor(h(fi), h(fi+1)) . We use SSIM instead of other image similarity meas-
ures because it has been shown that such a metric best captures the similarity of images as
perceived by humans (Wang et al. 2004). Since such a metric ignores colors but considers,
by default, a black-and-white version of the image, we also use HSV histograms to detect
differences in the colors. Finally, given the vectors of values hsv and s for all the frames
between 0 and n (number of frames in the video), we aggregate their values and define 12
video based features by computing the mean, median, minimum, maximum, first quartile,
and third quartile of both of them. Such features allow us to inform the model about the
distribution of such vectors. For example, let us imagine that the game crashed: the frame
fi before the crash is very similar to the previous ones, while the next frame, fi+1 is different
from fi . As a result, both hsvi and si will be very high. Two of our features (i.e., the max of
both the vectors) will reflect this information.

Given a training set of labeled video segments, we extract the features and train a ML
classifier. Given an input (unknown) video segment, we extract the same features used to
train the model, given the resulting vector as input to the trained ML model, and obtain the
predicted label. We describe in Section 4 how we built the training set and how we select
the best ML algorithm for this task among Random Forest (Ho 1995), Logistic Regression,
SMO (Hearst et al. 1998), Multilayer Perceptron (Ramchoun et al. 2016) and IBk (Choud-
hury and Bhowal 2015).

3.3 Context‑based Segment Grouping

After having collected and categorized segments that contain anomalies (i.e., the ones
classified as informative, i.e., as logic, presentation, performance, or balance), we
group them according to their context. With “context” we refer to the part of the game (
e.g., a specific game level or area) in which the anomaly occurred. This may be helpful
to provide the videos to the team in charge of the development of that specific part of
the game. Such a step is important for two reasons: (i) Developers analyzing hundreds
of videos related to a specific game may experience information overload and this, in
turn, would reduce the effectiveness of the video segments filtering step; (ii) Knowing

136 Page 8 of 32 Empirical Software Engineering (2023) 28:136

1 3

the context in which more anomalies occur allows the developer to identify where atten-
tion needs to be focused to improve the gaming experience.

To achieve this goal, we rely on video information: The assumption is that videos
with similar frames regard, most likely, the same context. First, we extract the key
frames from each segment by using the Video-kf Python package (Python 2023c). Then,
we define a summary frame of the whole segment by computing a pixel-by-pixel aver-
age of the previously identified key frames. Such a frame will roughly represent the con-
tent of the segment and, ideally, it can allow to visually represent the game area. We use
a clustering algorithm to group summary frames (and, thus, the associated segments).
More specifically, given a distance function between two images (summary frames, in
our case), we define a distance matrix which contains the distances between each couple
of summary frames and use it to cluster them.

We test two similarity metrics (which are also used for computing the video-based
features in the previous step): Structural similarity (SSIM) Wang et al. (2004), com-
puted on each pair of summary frames, and the correlation between the HSV histograms
extracted from each pair of summary frames. Note that both of them are similarity met-
rics, while clustering algorithms require to indicate the distances between instances.
Since both of them are bounded in the range [0, 1] , we simply transform them in dis-
tance metrics by computing 1 − s (where s is the value of the similarity metric).

Since the number of scenes is not necessarily known a priori, we use a non-para-
metric clustering technique. We describe in Section 4 how we select the best clustering
algorithm between the two we tested, i.e., DBSCAN (Ester et al. 1996) and OPTICS
(Ankerst et al. 1999), and the best distance metric between SSIM and HSV histogram
correlation.

3.4 Issue‑based Segment Clustering

A set of video segments of the same kind (e.g., bugs) and reported in the same context
might still be hard to manually analyze for developers. For example, if 100 segments
report bugs for a given level, developers need to manually analyze all of them. It might
be the case, however, that most of them report the same specific bug (e.g., a game
object disappears). To reduce the effort required to analyze such information, we cluster
segments reporting the same specific issue. This would allow developers to analyze a
single segment for each cluster to have an overview of the problems affecting the spe-
cific area of the game.

To achieve this goal, we represent the instances (i.e., video segments) by using both
textual and image-based features and, as in the previous step, we use non-parametric clus-
tering to create homogeneous groups. Textual features can help grasping the broad context
(e.g., objects disappearing or anomalous dialogues). Image-based features can help find-
ing visually similar problems (e.g., in the case of glitches). To this aim, we represent each
instance (video segment) using the set of features from the categorization step that allows
to obtain the best results for that task (as we report in Section 6). Differently from the pre-
vious step, indeed, we do not pre-compute the distance matrix. This allows us to test this
task not only with DBSCAN (Ester et al. 1996) and OPTICS (Ankerst et al. 1999), but also
with Mean Shift (Fukunaga and Hostetler 1975), which, differently from the previously-
mentioned algorithms, does not allow to directly use a distance matrix. Also in this case,
we describe in Section 4 how we select the best clustering algorithm among them.

Page 9 of 32 136Empirical Software Engineering (2023) 28:136

1 3

4 Empirical Study Design

The goal of our study is to evaluate the effectiveness of the four steps of GELID, i.e., (i)
extraction of meaningful video segments from gameplay videos (ii) accuracy in categoriz-
ing extracted video segments, (iii) capability of clustering video segments about the same
gameplay area, and (iv) ability to correctly cluster segments reporting the same specific
issue. The context of the study consists of a total of 275 gameplay videos.

Our study is steered by the following research questions (RQs).

RQ1: How meaningful are the gameplay video segments extracted by GELID?

The first RQ aims at evaluating the quality of the segments extracted by GELID from
gameplay videos in terms of their interpretability and atomicity. It aims at evaluating the
“video segmentation” step described in Section 3.1.

RQ2: To what extent is GELID able to categorize gameplay video segments?

With this second RQ we want to understand which features and which classification
algorithm allow to train the best model for categorizing gameplay video segments both in
two classes (informative and non-informative, like previous work Lin et al. (2019) and five
classes (logic, presentation, performance, balance, and non-informative). We also want
to understand to what extent the best models for the two categorization problems would
allow to achieve useful results in practice. RQ2 evaluates the “segment categorization” step
described in Section 3.2.

RQ3: What is the effectiveness of GELID in grouping gameplay video segments by con-
text?

In the third RQ, we aim to understand what the best clustering algorithm is for grouping
segments based on the game context, and how effective such an algorithm is in absolute
terms. This RQ evaluates the clustering step described in Section 3.3.

RQ4: What is the effectiveness of GELID in clustering gameplay video segments based
on the specific issue?

Similarly to RQ3, RQ4 aims at understanding which features and clustering algorithm
allow to achieve the best results for clustering segments based on the specific issue, and
how effective such an algorithm is in absolute terms. This RQ evaluates the clustering step
described in Section 3.4.

4.1 Context Selection

To the best of our knowledge, there are no large-scale, publicly available databases of
gameplay videos that provide meaningful information on the classification of problems
in video games through subtitle analysis. To answer our RQs and validate the defined
approach, we rely on gameplay videos from YouTube. While other platforms, even more
video game-oriented, could be used (e.g., Twitch), YouTube provides APIs for searching

136 Page 10 of 32 Empirical Software Engineering (2023) 28:136

1 3

videos of interest and it also allows to download videos including subtitles, which are
required by GELID. While subtitles can be automatically generated when the video lacks
them, the results could be noisy and, in this phase, we evaluate GELID assuming high-
quality input data. In our study, we collect three datasets, and the criteria used to search
for gameplay videos of interest depend on the dataset at hand (explicited in the subsections
below).

The first dataset is composed by video segments, and we use it used for training the
supervised model used in step 2 of GELID (i.e., segment categorization). We also use this
dataset to select the best model for answering RQ 2 . The second one is composed by com-
plete videos, and we use it for evaluating the single components of GELID and answer RQ
1−4 . The third one is a smaller dataset used to evaluate the parameters to be used in the dif-
ferent feature extraction and machine-learning techniques. We publicly release all datasets
in our replication package Guglielmi et al. (2023).

4.1.1 Training Data

Our goal is to build a training set of labeled segments containing at least 1,000 instances
and covering all the issue types GELID is able to identify. To select videos possibly useful
to build our training set, we used the YouTube Search APIs.4 Specifically, we ran a query
using the same keywords used by Lin et al. (2019), i.e., “bug”, “hack”, “glitch”, “hacker”,
“cheat”, and “cheater”. For each keyword, we retrieved a list of videos matching it. We also
added a filter to exclude videos without subtitles or with subtitles in languages different
from English since GELID relies on NLP-based features computed on them. Some You-
Tube videos have manually-defined subtitles, while others have automatically generated
ones. We include both of them. Indeed, while it is possible that the second category con-
tains errors, this risk also exists in manually generated ones. Also, the quality of the sub-
titles generated by YouTube is generally quite high for the English language. As a result,
we obtained 3,540 videos. Since some videos were present in more than a list (i.e., they
matched different keywords), we removed duplicates and obtained 3,196 videos. We report
in Table 2, for each keyword, the number of videos retrieved and filtered, along with the
number of extracted segments. Note that the number of segments might be lower than the
number of filtered videos because a video might not contain valid keywords in the subtitles
even though it contains them in other metadata, such as the title.

Our premise is that several gameplay videos report issues. However, issue-reporting
videos represent a minority of the entire gameplay videos population (thus the relevance
of our research). Therefore, to support the construction of the dataset containing training
data for the categorization step, we relied on the approach defined by Lin et al. (2019)
and consider only videos identified as issue-reporting. Specifically, we re-implemented
their approach (since it is not publicly available) and, for each video retrieved as previously
described, we ran the approach and discarded the videos classified as non-issue-reporting.
As a result, we kept 1,534 videos. We shuffled such videos and manually analyzed them
one by one to extract and label segments. One of the authors manually split each video
into meaningful segments, and two of the authors manually labeled each segment as logic,
presentation, balance, performance, or non-informative (when the segment does not
report any issue). Specifically, in order to manually split the video into segments, one of the

4 https:// devel opers. google. com/ youtu be/ v3

Page 11 of 32 136Empirical Software Engineering (2023) 28:136

https://developers.google.com/youtube/v3

1 3

authors carefully watched each gameplay video, covering its entire duration. During this
process, the author noted down the specific starting and ending times (in seconds) for each
segment that they identified within the video. The identification of significant segments
was guided by a specific criterion based on the classification outlined in Table 1, which can
be found in Section 2.2. With the phrase “meaningful segments” we mean video segments
that can be analyzed independently as shorter videos and contain enough information that
can help achieve the objectives of GELID. To determine whether a segment is “meaning-
ful,” as we report later, we use the principles of interpretability (to what extent humans can
get information from the segment) and atomicity (to what extent the segment contain only
the information related to a single issue). At this stage, we discarded segments reporting
more than an issue at a time. Given the large quantity of videos available compared to the
target number of segments we had in mind, we decided to make sure that the training set
was diverse in terms of video games considered. Thus, if we noticed that a video game was
already taken into account in several videos previously analyzed, we avoided to analyze
more videos of it. In total, we manually analyzed 170 gameplay videos, totaling about 17 h
of gameplay. As a result, we identified and labeled 1,255 video segments.

Specifically, we obtained 693 non-informative video segments (∼ 55.2%), 305 video
segments reporting presentation-related problems (∼ 24.3%), 169 video segments report-
ing logic problems (∼ 13.5%), 47 video segments with balance problems (∼ 3.7%), and
41 video segments highlighting performance problems (∼ 3.3%). Given the nature of the
problem at hand, as we expected, the dataset is imbalanced, with a great majority of seg-
ments being non-informative and a very small percentage of them reporting balance- and
performance-related issues.

4.1.2 Components Validation Data (Test Set)

To select videos on which we validate the single components of GELID, we focused on a
small set of video games. We did this because the third and fourth steps of GELID are rea-
sonable only when segments from the same video game are considered. To select the video
games to use, we rely on the information available on Steam, one of the largest video game
marketplaces (Toy et al. 2018). Based on information obtained from Steam we select three
video games that are both popular (e.g., for which many gameplay videos exist) and that
had several reported issues (e.g., for which GELID gives the best advantage). More spe-
cifically, we select video games with many downloads and low review scores. To do this,
we first retrieved the list of the top 100 most downloaded games on Steam, as reported in
Table 4. Then, we excluded the games with very positive or better reviews (i.e., we kept the
ones with “mostly positive” reviews or lower). We preliminarily analyzed a random sample

Table 2 Number of videos
retrieved for each keyword

Keyword #Videos
Retrieved

#Filtered Videos #Segments

bug 594 514 691
glitch 509 487 282
hack 514 155 64
hacker 502 115 66
cheat 528 145 112
cheater 549 118 40

136 Page 12 of 32 Empirical Software Engineering (2023) 28:136

1 3

of 10 gameplay videos for each video game after this filter using the YouTube search fea-
ture. If we found no gameplay videos reporting issues, we discarded the video game. Then,
for all the remaining video games, we used the YouTube Search APIs to search for “video-
game-name gameplay video”. We applied filters to select only videos with English subtitles
(either manually added or automatically generated) and with medium (4-20 min) and long
(+ 20 min) duration, with the aim of excluding non-informative videos representing game
trailers or identifying a compilation of issues (which, instead, were useful to build the train-
ing set). Finally, we selected the three video games with the highest number of gameplay
videos retrieved, i.e., Conan Exiles (Steam 2023a), DayZ (Steam 2023b) and New World
(Steam 2023c). In total, we obtained 80 gameplay videos, totaling about 45 h of gameplay.

Since manually splitting the entire videos would have been very demanding, we decided
to partially rely on the first step of GELID. More specifically, we identified in the subtitles
the keywords selected for the segmentation step. Then, one of the authors manually seg-
mented the video near those points to select a first set of possibly relevant segments, and
two of the authors independently manually categorized and clustered them both based on
the context and on the specific issue (only for informative videos). The two annotators dis-
cussed conflicts to reach consensus. In total, we identified 604 video segments, distributed
as depicted in Table 3. It is worth noting that we were able to identify only a few balance-
related segments (4 in total, with DayZ having none of them) (Table 4).

5 Experimental Procedure

We summarize in Fig. 2 our plan for answering the four research questions, and we provide
the details below.

5.1 Research Method for RQ1: Meaningfulness of Extracted Segments

To answer RQ1, we evaluate the technique we defined with different values of t (streamer
reaction times). Specifically, we instantiate our approach with t in the set {0, 5, 10} sec-
onds. We ran the first step of Video Segmentation on selected gameplay videos for each
video game in the test set, collecting a total of 101 video segments. Note that the number of
extracted segments is lower than the number of videos because some videos might not con-
tain any keyword we use in the Video Segmentation step to retrieve candidate relevant seg-
ments (see Section 3.1). Consequently, if a video does not contain any of these keywords,
no segment is extracted from it.

We evaluated the segments detected by each variant of our approach in terms of their
(i) interpretability (i.e., it is possible to watch the segment and acquire all the information

Table 3 Distribution of issue types (logic , presentation , performance , balance , and non-
informative) for each video game considered in the test set

Video Game Total

Conan Exiles 37 109 10 1 157 314
DayZ 7 67 16 0 90 180
New World 2 44 6 3 55 110
Total 46 220 32 4 302 604

Page 13 of 32 136Empirical Software Engineering (2023) 28:136

1 3

Table 4 Top 100 most popular games on Steam and related summary review scores (“Overwhelmingly Pos-
itive” ✔✔✔, “Very Positive” ✔✔, “Mostly Positive” ✔, “Mixed” ~ , and “Mostly Negative” ✖)

Video game Review Video game Review

CS:GO ✔✔ BeamNG drive ✔✔✔
Pubg ~ Counter strike ✔✔✔
Dota 2 ✔✔ RimWorld ✔✔✔
GTA V ✔✔ World of Tanks Blitz ✔✔
Tom Clancy’s Rainbow SixÂ® Siege ✔✔ The Elder Scrolls V: Skyrim Special Edition ✔✔
Team fortress 2 ✔✔ NARAKA Bladepoint ✔
Terraria ✔✔✔ Hunt: Showdown ✔✔
Garry’s Mod ✔✔✔ Civilization V ✔✔✔
Rust ✔✔ Project Zomboid ✔✔
Apex ✔✔ Factorio ✔✔✔
Wallpaper Engine ✔✔✔ Smite ✔
The WitcherÂ® 3: Wild Hunt ✔✔✔ The elder scrolls online ✔✔
Warframe ✔✔ theHunter: Call of the Wildâ„¢ ✔✔
Destiny 2 ✔✔ Age of Empires II: Definitive Edition ✔✔
Cyberpunk 2077 ✔ Satisfactory ✔✔✔
Dead by Daylight ✔✔ Stellaris ✔✔
ARK ✔✔ Fifa 22 ✔✔
Elden ring ✔✔ Forza Horizon 5 ✔✔
Stardew Valley ✔✔✔ Squad ✔✔
Euro track simulator 2 ✔✔✔ The sims 4 ✔✔
Rocket League ✔✔ Europa Universalis IV ✔✔
Phasmophobia ✔✔✔ Scum ✔
Payday 2 ✔✔ Stumble Guys ✔✔
The forest ✔✔✔ Assetto Corsa ✔✔
War Thunder ✔ Conan Exiles ✔
Valheim ✔✔✔ FINAL FANTASY XIV ONLINE ✔✔
Brawlhalla ✔✔ Crusader Kings III ✔✔
Red dead redemption 2 ✔✔ Yugioh Master Duel ✔
DayZ ✔ Left for dead ✔✔✔
Don’t Starve together ✔✔✔ eFootball 2023 ✖
Sea of thieves ✔✔ Black desert ✔
New World ~ Soundpad ✔✔✔
Geometry Dash ✔✔ Total War: Warhammer 3 ✔
Bloons TD 6 ✔✔✔ Fallout 76 ✔
The binding of Isaac: Rebirth ✔✔✔ Warhammer 40,000: Darktide ~
Path of exile ✔✔ Moster Hunter Rise ✔✔
Hades ✔✔✔ Coockie clicker ✔✔✔
Fallout 4 ✔✔ EA SPORTS™ FIFA 23 ~
VR Chat ✔ Farming Simulator 22 ✔✔
Lost Ark ✔ Victoria 3 ~
Civilization VI ✔✔ Goose Goose Duck ✔✔
days to die ✔✔ Undecember ~
Mount Blade II: Bannerlord ✔✔ Mir4 ~
Vampire Survivors ✔✔✔ Footbal Manager 2022 ✔✔

136 Page 14 of 32 Empirical Software Engineering (2023) 28:136

1 3

needed to understand what has been experienced by the streamer) (ii) the atomicity (i.e.,
it is not possible to further split the segments). Such aspects are complementary: It would
be possible to maximize the interpretability by creating few segments (e.g., just one for
the whole video); this, however, would result in lower atomicity since the segments could
be further divided into parts. While we would have ideally wanted to capture the “qual-
ity” of segments as a whole, it is quite hard to define a precise metric for such a com-
plex aspect. Thus, we preferred to use two specific and easy-to-evaluate aspects instead.
Concerning the relationship between such aspects and quality as a whole, we can say that,
given two segments A and B, if interpretability(A) > interpretability(B) and atomicity(A) >
atomicity(B), then quality(A) > quality(B). On the other hand, if we have conflicting situ-
ations (e.g., interpretability(A) < interpretability(B) and atomicity(A) > atomicity(B)), we
can not say whether the quality of A is greater or lower than the quality of B.

Two of the authors watched the segments generated by each variant, for a total of 303
evaluations, and manually annotated each segment in terms of its interpretability and ato-
micity on a 5-point Likert scale. As for the first metric, we evaluated to what extent we
could fully understand what is happening based only on the segment itself. As for atomic-
ity, instead, we assessed whether the segment can be further divided in additional stan-
dalone (fully interpretable) segments. The final score was computed as 5 minus the number
of additional standalone segments that could be further extracted, or 1 if more than four
standalone segments were found. Each of the 303 manually analysed slices was indepen-
dently inspected. We report the inter-rater reliability between the annotators by using the

Table 4 (continued)

Video game Review Video game Review

Cities: Skylines ✔✔ Dwarf fortress ✔✔✔
TmodLoader ✔✔✔ Nba 2K23 ~
Arma 3 ✔✔ Project: Playtime ~
Deep rock Galactic ✔✔✔ Divinity: Original Sin 2—Definitive Edition ✔✔✔
Hearth of Iron IV ✔✔ Paragon the Overprime ~
Call of Duty®: Modern Warfare® II ~ Football Manager 2023 ✔✔

X

X

X

RQ1: Segmentation RQ2: Categorization RQ3: Clustering (context) RQ4: Clustering (issue)Component Evaluation Dataset

Manual evaluation of the
segments in terms of
interpretability and
atomicity

Evaluation of the model in
terms of accuracy, recall,
precision, F1-score, and
AUC

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Game selection by using
information available on
Steam; gameplay video
selection from YouTube

Manual clustering Manual clustering

X

X

X

GELID GELID

Gameplay video sample selection from YouTube; filtering with the approach
defined by Lin et al.; manual segmentation of the videos; manual
categorization of each segment

Manual categorization

X

Training Set

GELIDGELID
segmentation

GELID
categorization

GELID
ctx. clustering

GELID
iss. clustering

Fig. 2 Summary of the study design

Page 15 of 32 136Empirical Software Engineering (2023) 28:136

1 3

Cohen’s kappa coefficient (Cohen 1960; Wan et al. 2015). Then, for each segment, we
compute the mean interpretability and atomicity. Finally, we compare the tested techniques
in terms of such metrics using a Mann–Whitney U test (Mann and Whitney 1947; MacFar-
land et al. 2016), and adjusting the p-values resulting for multiple comparisons using the
Benjamini and Hochberg procedure (Benjamini and Hochberg 1995). We also report the
effect size, using the Cliff’s delta (Cliff 1993), to understand the magnitude of differences
observed.

5.2 Research Method for RQ2: Segment Categorization Effectiveness

To answer RQ2, we use all the three datasets previously described. We aimed at evaluating
not only the complete approach on a multi-class categorization problem (the four informa-
tive classes reported in Table 1, plus the non-informative class), but also its version on a
simplified version of the same problem, i.e., a binary classifier (informative, non-informa-
tive) like the one defined by Lin et al. (2019). It is worth noting, however, that we could not
compare our results with the ones obtained with such an approach because it is designed to
work only on entire videos, not on segments.

As a first step, we aimed at selecting (i) the best machine learning algorithm, (ii) the best
set of features, and (iii) the best preprocessing pipeline for categorizing gameplay video seg-
ments in both scenarios. As candidate machine learning algorithms, we selected Random
Forest (Ho 1995), Logistic Regression, SMO (Hearst et al. 1998), Multilayer Perceptron
(Ramchoun et al. 2016) and IBk (Choudhury and Bhowal 2015). We used the implemen-
tations available in the Weka toolkit.5 At this stage, we used the default hyperparameters
available in Weka for each of them. As candidate set of features, as explained in Section 3,
we considered three textual-based sets of features (Bag of Words, word2vec, and doc2vec), a
video-based set of feature, and a mixed set of features (including both the best set of textual
features and the video-based set of features). As candidate preprocessing pipelines, we con-
sidered the use of SMOTE (Chawla et al. 2002), which allows to generate synthetic instances
for balancing the training set, and a two-step attribute selection approach: We first rank the
features based on their respective information gain and we discard the ones with score 0;
then, we run a wrapper attribute evaluator (Gnanambal et al. 2018) to select the best subset
of features in terms of AUC achieved by a simple kNN model with k = 3 . More specifically,
we considered four options: the use of SMOTE alone, the use of our two-step attribute selec-
tion alone, the use of both of them, and the use of none of them. At this stage, we relied on
the training set, and we performed a tenfold cross validation for all the combinations of ML
algorithms, feature sets, and preprocessing pipelines for both the problems (binary and multi-
class). For each of them, we compute and report the achieved AUC (Area Under the ROC
curve (Bradley 1997) (Flach 2016). An AUC of 0.5 indicates a model having the same pre-
diction accuracy of a random classifier. A perfect model (i.e., zero false positives and zero
false negatives) has instead AUC = 1.0. Thus, the closer the AUC to 1.0, the higher the model
performances. In the end, we select the combination that allows achieving the highest score
both for the binary and the multi-class model.

Finally, as a third step, we ran the best models on the test set to understand to what extent
the models would be useful in practice. In this case we report not the AUC, but also the preci-
sion, recall, and F-measure scores. Precision is computed as TP

TP+FP
 and recall is computed as

5 http:// www. cs. waika to. ac. nz/ ml/ weka/

136 Page 16 of 32 Empirical Software Engineering (2023) 28:136

http://www.cs.waikato.ac.nz/ml/weka/

1 3

TP

TP+FN
 , where TP, FP, and FN indicate the number of true positives, false positives, and false

negatives, respectively. F-measure is computed as the harmonic mean of precision and recall.

5.3 Research Method for RQ3: Contextual Clustering Effectiveness

To address RQ3, we tested the two non-parametric clustering techniques described in Sec-
tion 3, i.e., DBSCAN (Ester et al. 1996, OPTICS (Ankerst et al. 1999) with two distance met-
ric, i.e., HSV and SSIM.

Both DBSCAN and OPTICS require to set an � parameter, which indicates the minimum
distance to be used to consider two instances belonging to the same cluster. However, deter-
mining the input parameter values can be very difficult. For both non-parametric clustering
techniques, we decide the value of � by using a well-known procedure (Ozkok and Celik
2017). Specifically, we (i) calculate the distance between each point and its nearest neighbour,
(ii) sort the distances in ascending order, (iii) compute, for each pair of consecutive distances,
their difference Δi

= d
i+1 − d

i), and (iv) set � = max(Δ
i
) . We used this procedure indepen-

dently for each clustering operation we run (i.e., each combination of video game and similar-
ity metric).

We compare the results of the algorithms with the ground-truth partition produced in the
manual clustering of the test set to evaluate this step of GELID. To do this, we use the MoJo
eFfectiveness Measure (MoJoFM) (Wen and Tzerpos 2004), a normalized variant of the MoJo
distance. MoJoFM is computed using the following formula:

where mno(A,B) is the minimum number of Move or Join operations one needs to perform
in order to transform a partition A into a different partition B , and max(mno(∀EA

,B) is the
maximum possible distance of any partition A from any partition B . MoJoFM returns 0 if
partition A is the farthest partition away from B ; it returns 100 if A is equal to B.

We report the MoJoFM obtained for each combination of game and metric considered.

5.4 Research Method for RQ4: Specific Issue‑Based Clustering Effectiveness

To answer RQ4, we tested the same clustering techniques considered in RQ3 (DBSCAN (Ester
et al. 1996) and OPTICS (Ankerst et al. 1999) plus a third (i.e., Mean Shift (Fukunaga and
Hostetler 1975)) which we could not use in RQ3 because it can not use custom distance met-
rics. We start from the ground-truth clusters manually defined in the test set. For each of them,
we run the issue-based clustering approach defined in Section 3 on the instances belonging
to them. We use the same procedure described in RQ3 to define the � hyperparameters for
DBSCAN and OPTICS for each clustering operation. This time, we do not report the � values
used for space reasons (given the higher number of clustering operations). We report, like for
RQ 3 , the MoJoFM score achieved for each video game.

5.5 Replication Package

We publicly release in our replication package (Guglielmi et al. 2023) the datasets used
in each research question, the ARFF files used to train and test the machine learning tech-
niques, the raw data of our manual analyses for each research question, and additional

MoJoFM(A,B) = 100 − (
mno(A,B)

max(mno(∀EA,B))
× 100)

Page 17 of 32 136Empirical Software Engineering (2023) 28:136

1 3

data that did not fit in our paper. We also publicly provide the implementation of each
step of GELID.

6 Empirical Study Results

This section reports the results of the four research questions formulated in Section 4.

6.1 RQ1: Interpretability and Atomicity of Gameplay Video Segments

The IRR between the two raters when they evaluated the interpretability of the segments
extracted with GELID is k = 0.84 , while it is k = 0.85 when evaluating them in terms of
atomicity. Thus, in both the cases, the agreement was almost perfect.

When comparing t = 0 with t = 5 in terms of interpretability of gameplay video seg-
ments generated by GELID, we obtain an adjusted p-value < 0.001, with a negligible effect
size (� = -0.146). We obtain an analogous result when comparing t = 5 with t = 10 (p <
0.001, � = -0.092, negligible magnitude). We observed also a difference between t = 0
witht = 10 : In this case, the adjusted p-value is the same (p < 0.001), while, this time, the
effect size is small (� = -0.227). The boxplot in Fig. 3 (left part) visually confirms the dif-
ference we numerically observed.

In terms of atomicity, when comparing t = 0 with t = 5 we obtain an adjusted p-value
< 0.001, with a large effect size (� = 0.610). We obtain an analogous result when com-
paring t = 5 with t = 10 (p < 0.001, � = 0.577, large magnitude). As expected, again, the
difference between t = 0 with t = 10 is large as well (p-value < 0.001, � = 0.869). The
boxplot in Fig. 3 (right part) visually confirms the difference we numerically observed. A
case in which two annotators disagreed on the evaluation of the atomicity of a segment is
related to segment in a gameplay video on Conan Exiles. One author rated the atomicity
of the segment as 4, while the second author rated it as 5. The disagreement arose from
the presence of a gameplay setting screen that appeared during the video segment, lasting
about 3 s. This setting screen interrupted the ongoing game phase and then resumed it. The
first evaluator considered this interruption significant enough to be considered as a point in
which two segments could be detected, while the second annotator considered the screen
appearance time negligible, given its short duration.

Considering overall the results, we can conclude that by increasing the t value we obtain
negligible advantages in terms of interpretability and substantial disadvantages in terms of
atomicity. More specifically, while increasing t from 0 to 5 allows to obtain an observable
difference in terms of interpretability, having a t value higher than 5 practically brings no
advantage at all (see Fig. 3 — left part). We conclude that t values higher than 5 are most
likely not worth considering, while there is a trade-off that users might want to consider
between t = 0 (which allows having substantially more atomic videos) and t = 5 which
allows having more interpretable videos, even if slightly). Indeed, we obtain for t = 0 an
average interpretability of 3.97 and an average atomicity of 4.88, while t = 5 provides an
average value of 4.27 for both interpretability and atomicity.

Answer to RQ1. The proposed segmentation approach achieves satisfactory results. The
best results are obtained when using t = 0 (privileging atomicity) and t = 5 (privileging
interpretability).

136 Page 18 of 32 Empirical Software Engineering (2023) 28:136

1 3

6.2 RQ2: Gameplay Video Segments Categorization

ML Pipeline Selection and Training We report in Tables 5 and 6 the results of the tenfold
cross-validation comparison performed on the training set to select the best algorithm both
for binary and multi-class categorization, respectively. For deciding which sets of textual
features we would include in the combination of image-based features and textual features,
we compared the average results obtained with textual features alone and we picked the
features that generally allow to achieve the best results (i.e., Word2Vec).

The machine learning algorithm that provides the best results for binary classification is
Random Forest, while the best set of features is the combination of image-based and tex-
tual features. Using both SMOTE and attribute selection, we obtained 0.79 AUC (71.8%
accuracy). The best results could be achieved with Random Forest and a combination of
image-based and textual features for multi-class categorization as well. This time, how-
ever, the best model was the one trained by only running attribute selection (i.e., without
balancing the training set with SMOTE). In this case, the obtained AUC is slightly lower
(0.75 AUC, 62.0% accuracy), most likely due to the inherently more difficult problem (cat-
egorizing in five classes instead of two).

Testing the Models Tables 7 and 8 report the recall, precision, F-Measure and AUC
scores achieved by the best model for binary and multi-class categorization, respectively.
In detail, we report the results achieved both for individual games and for all the instances
together.

Fig. 3 Distribution of interpretability (left) and atomicity (right) evaluation of gameplay video segments
with the three different thresholds (t = 0 , t = 5 , t = 10)

Page 19 of 32 136Empirical Software Engineering (2023) 28:136

1 3

Overall, the binary classification model exhibits slightly worse results compared to
the ones obtained on the training set with tenfold cross validation (0.61 AUC vs. 0.79).
The model has an acceptable recall (72%) and a relatively low precision (56%) on the
informative class. This means that a developer would be able to get most of the poten-
tially interesting segments, but they also have to manually discard many non-informa-
tive ones in the process. The results, however, depend much on the video game at hand:
For Conan Exiles, for example, the model always achieves acceptable results both in
terms of overall precision (66%) and recall (64%). This might depend on many factors.
First, on the quality of the streaming videos taken into account: Streamers might be
more verbose for some video game genres, thus allowing the classifier to better identify
the segments. Second, on the similarity with video games included in the training set:
Some genre- or game-specific terms might be indicative of an issue for some games,
while not for others. For example, the phrase “loot hack” might appear in online multi-
player role play games and indicate a logic issue, but it might not be pronounced at all
by streamers playing racing games.

Table 5 RQ2: Comparison, in terms of unweighted average AUC, of different sets of features (Bag of
Words, Word2Vec, Doc2Vec, Image-based features), preprocessing techniques (SMOTE and Attribute
Selection), and ML algorithms for binary classification (non-informative/informative)

Model Plain AS SMOTE SMOTE + AS

BoW RandomForest 0.72 0.73 0.72 0.73
Logistic 0.63 0.74 0.62 0.73
SMO 0.68 0.60 0.68 0.66
MultilayerPerceptron 0.52 0.73 0.68 0.73
IBk 0.58 0.73 0.60 0.73

W2V RandomForest 0.72 0.72 0.74 0.71
Logistic 0.68 0.70 0.69 0.70
SMO 0.65 0.65 0.65 0.65
MultilayerPerceptron 0.73 0.68 0.72 0.69
IBk 0.62 0.62 0.62 0.63

D2V RandomForest 0.52 0.50 0.52 0.50
Logistic 0.50 0.50 0.49 0.50
SMO 0.51 0.50 0.48 0.50
MultilayerPerceptron 0.52 0.50 0.56 0.50
IBk 0.50 0.50 0.52 0.50

I RandomForest 0.74 0.69 0.74 0.68
Logistic 0.69 0.66 0.69 0.66
SMO 0.61 0.58 0.58 0.57
MultilayerPerceptron 0.67 0.66 0.69 0.66
IBk 0.62 0.61 0.62 0.60

W2V + I RandomForest 0.78 0.78 0.79 0.79
Logistic 0.70 0.72 0.70 0.72
SMO 0.68 0.65 0.67 0.63
MultilayerPerceptron 0.74 0.73 0.76 0.71
IBk 0.65 0.66 0.64 0.66

136 Page 20 of 32 Empirical Software Engineering (2023) 28:136

1 3

Analogous conclusions can be drawn from the results achieved with the multi-class
model. In this case, it is interesting to observe that some classes the classifier never catego-
rizes instances as performance and balance (“–” for precision in Table 8). This is possibly
due to the fact that such issue types are generally less prevalent than others6 and, thus, the
model fails to learn how to recognize them. It is also worth noting that we were not able to
find balance issues in one of the games taken into account (i.e., DayZ). Overall, the model
achieves better results on the presentation class. This is probably due to the fact that, for
this category, the model also relies on image-based features, which are less relevant for the
other classes (Table 9).

Answer to RQ2. The categorization models defined are not able achieve satisfactory
results both for binary and multi-class categorization.

Table 6 RQ2: Comparison, in terms of unweighted average AUC, of different sets of features (Bag of
Words, Word2Vec, Doc2Vec, Image-based features), preprocessing techniques (SMOTE and Attribute
Selection), and ML algorithms for multi-class classification (logic, presentation, performance, balance,
non-informative)

Model Plain AS SMOTE SMOTE + AS

BoW RandomForest 0.72 0.70 0.71 0.69
Logistic 0.70 0.69 0.70 0.70
SMO 0.67 0.62 0.67 0.69
MultilayerPerceptron 0.70 0.71 0.70 0.70
IBk 0.60 0.69 0.60 0.69

W2V RandomForest 0.73 0.72 0.70 0.71
Logistic 0.59 0.71 0.63 0.69
SMO 0.67 0.60 0.70 0.67
MultilayerPerceptron 0.67 0.64 0.68 0.65
IBk 0.58 0.59 0.61 0.60

D2V RandomForest 0.52 0.49 0.51 0.49
Logistic 0.48 0.49 0.48 0.49
SMO 0.49 0.50 0.49 0.49
MultilayerPerceptron 0.52 0.49 0.50 0.49
IBk 0.49 0.49 0.51 0.49

I RandomForest 0.69 0.62 0.67 0.62
Logistic 0.66 0.64 0.65 0.64
SMO 0.54 0.53 0.62 0.61
MultilayerPerceptron 0.52 0.66 0.63 0.64
IBk 0.56 0.58 0.56 0.56

W2V + I RandomForest 0.74 0.75 0.74 0.71
Logistic 0.61 0.71 0.65 0.70
SMO 0.70 0.57 0.71 0.68
MultilayerPerceptron 0.71 0.67 0.71 0.66
IBk 0.60 0.59 0.62 0.58

6 33 and 48 in the training set, 31 and 4 in the test set for performance and balance, respectively.

Page 21 of 32 136Empirical Software Engineering (2023) 28:136

1 3

6.3 RQ3: Clustering Gameplay Video Segments by Context

Table 10 shows the MoJoFM score achieved by the two tested algorithms when compar-
ing their output with the manually defined clusters. First, it can be observed that OPTICS
allows to achieve the best results for all games taken into account, between 46.0% (New
World) and 21.9% (Conan Exiles). It is worth noting that the variability among video
games is, in this case, quite high. This is expected: Some games have areas and levels very
similar one to another, thus making the task of visually distinguishing the areas quite chal-
lenging even for a human who never played the game. For example, the frames presented
in Fig. 4 represent two visually similar areas in Conan Exiles that, however, are different.

Overall, however, we can conclude that the clustering approach we defined in GELID is
only partially able to achieve its goal.

Answer to RQ3. We obtained mixed results for the clustering by context step because its
performance strongly depends on the video game at hand.

6.4 RQ4: Clustering Gameplay Video Segments by Specific Issues

Table 11 shows the MoJoFM score achieved by the three tested algorithms when compar-
ing their output with the manually defined clusters. In this case, the results are definitely
better than the ones obtained in the previous experiment, with the best-performing algo-
rithm (DBSCAN) achieving 72.7% MoJoFM score. This is due to the fact that, in this case,
there were less instances to cluster for two of the games taken into account (DayZ and New
World). As a result, the task was inherently easier. It is worth noting, however, that for
Conan Exiles the number of instances to cluster was quite large, in some cases, up to 18
and DBSCAN still achieves very good results (71.2% MoJoFM).

Differently from what observed for RQ3, we have a much less marked variance among
the games (between 69.1% and 77.8%). OPTICS, in this case, achieved slightly worse
results than DBSCAN, while MeanShift is clearly less effective than the others.

Answer to RQ4. DBSCAN allows to cluster the segments very similarly to how human
annotators clustered them, with a low variability among video games.

Table 7 RQ2: Performance of the best binary categorization model on the test set. We use the icon to
indicate the informative class and the icon to indicate the non-informative class, while indicates their
weighted mean

Game Precision Recall F-Measure AUC

Conan Exiles 61% 70% 66% 77% 52% 64% 68% 60% 64% 0.73 0.73 0.73
DayZ 52% 54% 53% 71% 34% 53% 60% 42% 51% 0.55 0.55 0.55
New World 65% 47% 58% 71% 40% 59% 68% 43% 59% 0.61 0.61 0.61
Overall 56% 62% 60% 72% 45% 58% 63% 52% 58% 0.58 0.64 0.61

136 Page 22 of 32 Empirical Software Engineering (2023) 28:136

1 3

7 Discussion

The main problems we encountered are in the automated categorization of issues in game-
play video segments and in the context-based segment clustering (steps 2 and 3 of GELID).

First, it is worth noting that our results partially contrast the ones obtained by Lin et al.
(2019), who defined a classifier able to correctly distinguish informative from non-inform-
ative gameplay videos. Segment-level categorization is a much harder problem than video-
level categorization. This is confirmed by the fact that even simplifying our five-class cate-
gorization problem in binary categorization problem (similarly to the one addressed by Lin
et al. (2019), but on segments), we still obtain negative results (58% F-Measure, with 0.61
AUC). We have some hypothesis on why this is the case. First, videos have metadata (such
as tags, descriptions, and so on) that segments lack. Lin et al. (2019) used such metadata,
but we could not use them in our context. If a video is specifically aimed at reporting issues
(i.e., it contains a compilation of game errors), it is very likely that the authors explicitly
mention this in the description. Gameplay video subtitles, instead, are much more noisy.

We observed that, often, the subtitle sentences are incomplete and ambiguous (e.g.,
“logics, bro. Well, I talk all” used for a logic problem, “they are lower than that” used for
a presentation problem, and “less well-known logic that’s arguably one” used for a perfor-
mance problem). To some extent, this happens because the comment corresponding to the
portion of the video in which the issue appears might not be in sync with the issue itself:
Gamers might talk about the issues even several minutes after it appears. It is worth noting
that this problem is not related to the automated segmentation, because in evaluating step 2
with RQ 2 we used manually-defined segments. The problem is in the lack of (logical) sync
between what streamers say and when what they say happens on screen. Future work could

Table 8 RQ2: Performance of the best multi-class categorization model on the test set. We use the icons
, , , , and to indicate the logic, presentation, performance, balance, and non-informative

classes, respectively, while indicates their weighted mean

Game Precision Recall

Conan Exiles 58% 48% 25% - - 48% 81% 39% 3% 0% 0% 55%
DayZ 51% 35% 0% - - 39% 61% 34% 0% - 0% 43%
New World 56% 49% 25% - - 48% 71% 40% 50% 0% 0% 52%
Overall 56% 44% 13% - - 45% 73% 38% 10% 0% 0% 51%
Game F-Measure AUC

Conan Exiles 68% 43% 5% - - 49% 0.69 0.65 0.58 0.33 0.57 65%
DayZ 55% 35% 0% - - 43% 0.52 0.52 0.53 - 0.47 51%
New World 63% 44% 33% - - 49% 0.64 0.60 0.93 0.72 0.10 62%
Overall 63% 40% 10% - - 47% 0.63 0.60 0.54 0.61 0.48 60%

Table 9 RQ3: MoJoFM achived
for clustering by context with
HSV

DBSCAN OPTICS

Conan Exiles 17.8% 21.9%
DayZ 23.2% 36.6%
New World 28.0% 46.0%
Average 23.0% 34.8%

Page 23 of 32 136Empirical Software Engineering (2023) 28:136

1 3

consider a larger context for extracting the features (e.g., the surrounding n seconds, with
even large values of n) instead of only considering the subtitles related to the specific seg-
ment. The idea based on the possibility of using a larger context stems from the assumption
that expanding the context of observation allows for a broader view of what is happening
in the specific gameplay video, thus in the game, and allows more features to be extracted.

Lesson Learned 1. Considering a larger context for extracting textual features might allow obtaining better
results

Future Research Idea 1. To overcome this limitation, future research could aim to consider a larger por-
tion of video both before and after the given identified segment

Using keywords to detect possibly useful segments of the gemeplay videos might be
detrimental. Indeed, there may be segments without streamer comments, that would be
completely ignored. These are blind spots for GELID. To address this limitation, it may be
necessary to develop new and specialized approaches to detect specific problems, such as
glitches or stuttering events.

Related to this, another problem we noticed by analyzing some examples is that stream-
ers sometimes comment on their gaming experience in an irregular manner, often even
through simple exclamations (e.g., “the glitch myself?” for performance, “BAM!” for logic,
“and there!” for presentation). Catching those issues is probably infeasible by only rely-
ing on textual information. Similarly, we can observe a performance problem found in a
gameplay video of New World7: The game temporarily freezes while the player is running,
but they say “here can see one right now okay stop doing that let’s start running they’re
nasty big aren’t they”, referring to what is happening in the game. Automatically categoriz-
ing this kind of issue is, again, extremely challenging, and a more specific approach would
be needed. Another limitation of GELID is related to the fact that it only relies on game-
play videos in English. Future work is needed to generalize it to other languages. In CLAP

Table 10 RQ3: MoJoFM achived
for clustering by context with
SSIM

DBSCAN OPTICS

Conan Exiles 4.8% 21.9%
DayZ 0.0% 2.5%
New World 0.0% 18.5%
Average 1.6% 14.3%

Fig. 4 Different game scenes in Conan Exiles grouped in the same context cluster

7 https:// youtu. be/ 1duiz y5DSOg? t= 1540

136 Page 24 of 32 Empirical Software Engineering (2023) 28:136

https://youtu.be/1duizy5DSOg?t=1540

1 3

(Scalabrino et al. 2017), an attempt has been made to deal with this issue. The authors tried
to translate the input textual information (in the context of GELID, subtitles) from foreign
languages into English and then use the normal approach (which works on English) to deal
with them. However, this solution proved to be unsuccessful. In this paper, we use word-
2vec: It would be possible to test the effectiveness of word2vec models trained on other lan-
guages. Based on the negative results obtained for English, which is quite widespread, we
believe that the implementation of such an approach cannot be successful at present.

Lesson Learned 2. Sometimes, textual features are not useful at all since the streamers use generic excla-
mations to report issues

Future Research Idea 2. Future research could aim at taking into account the slang used by streamers and
to define a vocabulary of the terms most commonly used to describe different kinds of issues or to define
specialized approaches to detect issues mostly based on the videos rather than on the captioned spoken
content

When looking at the multi-class categorization, the problem is even more evident in
terms of general effectiveness of the model. We report in Table 12 the confusion matrix
for the multi-class categorization model. While the model correctly identifies 81 presen-
tation issues, it correctly detects only 2 logic-related issues and, again, no performance-
and balance-related issue. More interestingly, the model often categorizes presentation-
related issues as logic issues, while the opposite happens relatively less frequently. In
general, instead, the model tends to confuse the specific categories of instances as pres-
entation-related, probably because it is the most frequent informative type of issue.

We analyzed some misclassified instances, aiming at getting some insights on why the
model tends to confuse some presentation issues for logic issues and why it is not able to
correctly identify performance and balance instances. We found an interesting example in
DayZ. The streamer says “my doesn’t seem to be archived it back back is so annoying”,8 but

Table 11 RQ4: MoJoFM achived
for clustering on the specific-
issue

DBSCAN OPTICS MeanShift

Conan Exiles 71.2% 62.5% 52.9%
DayZ 69.1% 69.1% 58.2%
New World 77.8% 77.8% 55.6%
Average 72.7% 69.8% 55.5%

Table 12 RQ2: Confusion Matrix for multi-class categorization on all the instances (Conan Exiles, DayZ,
and New World). The columns indicate the categories assigned by the classifier, while the rows indicate
actual ones

218 75 5 0 0

126 81 8 0 0

27 16 2 0 0

18 13 0 0 0

3 1 0 0 0

8 https:// youtu. be/ eDQId qDC- sc?t= 239

Page 25 of 32 136Empirical Software Engineering (2023) 28:136

https://youtu.be/eDQIdqDC-sc?t=239

1 3

the model probably confuses the indication of an “annoying” circumstance for something
related to a functional issue (logic), while, in this case, it was referred to a presentation issue.

Lesson Learned 3. Given the strong class unbalance, categorization does not work well for detecting
performance and balance problems. Approaches specifically designed for finding such categories of issues
might be needed

Future Research Idea 3. To increase the number of balance and performance instances, it could be use-
ful to look for and specifically take into account video games that are or have been notorious for such
problems

Another possible reason behind the failure in categorization could be related to the pro-
cedure used to define the training set: To collect an adequate number of instances, we con-
sidered videos that explicitly report issues (i.e., that contain keywords such as “bug” in their
title or description). It is possible that these videos are intrinsically different from the long
gameplay videos we used for testing the models. To check if this is the case, we trained/tested
two classifiers (both for binary and multi-class categorization) based on the best configura-
tions found in RQ 2 by using tenfold cross validation on the test set alone, both globally and
by considering the instances of single games. We report the results in Table 13. We observed
a clear increase in the effectiveness of both the models, with the binary classification model
achieving ∼ 82% accuracy on two games. While more data would be necessary, the results of
this analysis suggest that videos explicitly reporting issues are too different from long game-
play videos (that we aim to target) in which issues sometimes appear. Thus, it would be more
appropriate to build the training set using the same procedure used to build the test set, even
if this require a much bigger effort (it would not be possible, for example, to use the approach
by Lin et al. (2019) as a filter). Also, using a training set composed of only game-specific
instances might allow to achieve better results (even if we observed this only for two games
out of three). In detail, again, a training set defined on a specific game allows for more precise
information in relation to the game area/level. For example, open world games have very
similar game areas, so a large amount of data would allow a more precise distinction to be
made between the different game areas in which users find themselves.

Lesson Learned 4. A training set built on long gameplay videos not specifically aimed at reporting issues
might help achieving better results. Also, gamespecific training might help increasing the model accuracy

Future Research Idea 4. Future research should verify what is the impact of the type of video, i.e., long
and generic gameplay videos or short and focused gameplay videos reporting issues, on the performance
of the four steps of GELID

As for the context-based segment categorization (step 3 of GELID), as we previously
mentioned while analyzing the results, the poor performance can be due to the fact that some
games have visually similar, but logically different game areas/levels. Some video games

Table 13 Accuracy and AUC
achieved by training/testing
the best models for binary and
multi-class categorization on the
test set alone using tenfold cross
validation

Game Binary Multi-class

Accuracy AUC Accuracy AUC

Conan Exiles 81.7% 0.89 71.7% 0.73
DayZ 64.7% 0.75 59.0% 0.56
New World 81.7% 0.89 67.9% 0.72
Combined 72.7% 0.79 59.9% 0.63

136 Page 26 of 32 Empirical Software Engineering (2023) 28:136

1 3

might suffer from this issue more than others. In our case, we observed that our approach
(specifically, the variant based on HSV histogram correlation, which achieves the best results)
works reasonably well on New World, but remarkably bad on Conan Exiles. For the video
games on which our approach does not work well, a more sophisticated (and game-specific)
approach might be used, which should be specialized on the game at hand so that, for exam-
ple, it is able to distinguish the specific game areas by recognizing specific game elements.

Lesson Learned 5. A game-specific approach for recognizing the game area/level might be needed for
some video games

Future Research Idea 5. Researchers should test the impact of introducing game- or game-genre-specific
features on the effectiveness of the context-based clustering

8 Threats to Validity

Threats to construct validity mainly pertain the possible imprecisions made while defining
the test set used to evaluate GELID and to answer all our research questions. As explained
in Section 4, to reduce this threat, two evaluators independently tagged each instance and
discussed conflicts aiming at reaching consensus. This occurred in 1.2% of the cases.

Threats to internal validity concern factors internal to our study that could have
affected the results. A first threat regarding RQ 2 is related to the specific set of ML tech-
niques we decided to use and to the preprocessing pipelines we tested. As for the first, we
took into account the main categories of classic ML approaches. It is possible that Deep
Learning-based approach achieve better results, but we avoided using such approaches
because even a small Neural Network (Multilayer Perceptron) achieves very poor results
given the small size of our training set. Another limitation related to RQ 2 is the choice not
to tune the hyperparameters and to use the predefined hyperparameters provided by Weka.
To understand the impact of this decision, we tried to replicate the results of binary clas-
sification of segments as informative and non-informative while varying the main hyperpa-
rameter for Random Forest (i.e., the maximum number of features). We report in Table 14
the results of such an analysis on the Conan Exiles dataset.9 Although this analysis revealed
some improvements in model performance while varying such a parameter, we found that
the impact of not tuning it was rather small (+ 4 percentage points for F-Measure and + 0.01
for AUC). Thus, we believe this is not the cause of the negative results we obtained.

The classes we consider for the multi-class categorization problem (RQ 2 might be
incomplete: It is possible that we do not consider some relevant categories of issues. To
mitigate this threat, we avoided defining such categories based on our personal experience,
but we relied on a state-of-the-art taxonomy Truelove et al. (2021). A key threat regards the
features considered for step 2 (and, thus, to answer RQ2). It is worth noting that we relied
on features that proved to be useful in other contexts (e.g., categorization and clustering of
mobile app reviews Chen et al. (2014); Scalabrino et al. (2017)), and we also augmented
them with video-based features. Still, it is possible that a different set of features leads to
better results. As for clustering (both RQ3 and RQ4), it is possible that we chose sub-opti-
mal parameters (i.e., � values). To reduce this threat, we used a rigorous procedure Ozkok
and Celik (2017) to set these values for each tested video game.

9 Note that the results differ from the ones reported in Table 6 because we did not run any preprocessing
step here.

Page 27 of 32 136Empirical Software Engineering (2023) 28:136

1 3

Finally, threats to external validity concern the generalizability of our findings. Our test
set is composed of gameplay videos related to only 3 video games. We could not select vid-
eos from a more diverse set of video games because we needed multiple segments related
to the same game areas to address RQ 3 and RQ 4 . However, it is worth noting that we also
report in Tables 5 and 6 the results of a tenfold cross validation performed on the training
set, which, differently from the test set, is composed of videos from many video games 110,
specifically. Nevertheless, we acknowledge that most of our results are not necessarily gener-
alizable to the vast quantity of video game genres and video games available in the market.

We believe that the variety of video games is not as relevant as the variety and type of stream-
ers involved. GELID heavily relies on (captioned) spoken content for segmentation and categori-
zation. To this end, having verbose streamers could benefit GELID. On the other hand, the video
game selection might mostly impact the two clustering-related steps: For example, games with
many graphically similar levels or areas might deceive GELID while it cluster segments.

9 Conclusion

In recent years, there has been a growing interest in video games. During game develop-
ment, many bugs go undetected prior to release because of the difficulty of fully testing all
aspects of a video game. We introduce GELID, a novel approach for detecting anomalies
in video games from gameplay videos to support developers by providing them with useful
information on how to improve their games. We validated the single steps of GELID in an
empirical study involving 604 segments extracted from 80 h of gameplay videos related
to 3 video games (Conan Exiles, DayZ, and New World). We obtained mixed results: The
effectiveness of both segmentation (step 1) and issue-based clustering (step 4) are satisfac-
tory, while we observed that categorization (step 2) and context-based clustering (step 3) of
segments still do not work sufficiently well to be used in practice. Future work should aim
at addressing these two problems. To foster research in this field, we publicly release all the
(manually annotated) datasets in our replication package Guglielmi et al. (2023).

Table 14 RQ2: Hyperparameter Tuning of the Random Forest categorization model on Conan Exiles. We
use the icon to indicate the informative class and the icon to indicate the non-informative class, while

 indicates their weighted mean

Num
Features

Precision Recall F-Measure AUC

Unlimited
(default)

55% 72% 63% 88% 29% 59% 68% 42% 55% 0.68 0.68 0.68

1 55% 65% 60% 80% 37% 58% 65% 47% 56% 0.61 0.61 0.61
2 56% 74% 65% 87% 34% 60% 68% 47% 58% 0.63 0.63 0.63
3 57% 80% 69% 92% 32% 62% 70% 45% 57% 0.66 0.66 0.66
4 54% 66% 60% 85% 27% 56% 66% 39% 52% 0.62 0.62 0.62
5 56% 79% 68% 92% 31% 61% 70% 45% 57% 0.65 0.65 0.65
6 55% 80% 68% 93% 26% 59% 70% 39% 54% 0.69 0.69 0.69
7 56% 77% 69% 70% 45% 57% 69% 45% 57% 0.67 0.67 0.67
8 65% 47% 58% 56% 79% 68% 92% 31% 61% 0.69 0.69 0.69
9 55% 72% 63% 88% 30% 59% 68% 42% 55% 0.69 0.69 0.69
10 57% 84% 70% 93% 32% 63% 71% 47% 59% 0.68 0.68 0.68

136 Page 28 of 32 Empirical Software Engineering (2023) 28:136

1 3

Data Availability All the datasets produced and the scripts implemented to obtain the results reported in this
paper (including our implementation of GELID) are available in our replication package (Guglielmi et al. 2023).

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Ankerst M, Breunig MM, Kriegel HP, Sander J (1999) Optics: Ordering points to identify the clustering
structure. ACM Sigmod Rec 28(2):49–60

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J Roy Stat Soc Ser B (Methodol) 57(1):289–300

Bradley AP (1997) The use of the area under the roc curve in the evaluation of machine learning algorithms.
Pattern Recogn 30(7):1145–1159

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling tech-
nique. J Artif Intell Res 16:321–357

Chen N, Lin J, Hoi SC, Xiao X, Zhang B (2014) Ar-miner: mining informative reviews for developers from mobile
app marketplace. In: Proceedings of the 36th international conference on software engineering, pp 767–778

Choudhury S, Bhowal A (2015) Comparative analysis of machine learning algorithms along with classifiers
for network intrusion detection. In: 2015 International Conference on Smart Technologies and Man-
agement for Computing, Communication, Controls, Energy and Materials (ICSTM), IEEE, pp 89–95

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Measur 20(1):37–46
Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large

spatial databases with noise. In: kdd, vol 96, pp 226–231
Flach PA (2016) Roc analysis. In: Encyclopedia of machine learning and data mining, Springer, pp 1–8
Fukunaga K, Hostetler L (1975) The estimation of the gradient of a density function, with applications in

pattern recognition. IEEE Trans Inf Theory 21(1):32–40
Gnanambal S, Thangaraj M, Meenatchi V, Gayathri V (2018) Classification algorithms with attribute selec-

tion: an evaluation study using weka. Int J Adv Netw Appl 9(6):3640–3644
Guglielmi E, Scalabrino S, Bavota G, Oliveto R (2022) Towards using gameplay videos for detecting issues

in video games. arXiv preprint arXiv:220404182
Guglielmi E, Scalabrino S, Bavota G, Oliveto R (2023) Replication package of "using gameplay videos for

detecting issues in video games". https:// figsh are. com/s/ 3de4d 6958a 57073 dfa1b
Guzdial M, Shah S, Riedl M (2018) Towards automated let’s play commentary. arXiv preprint arXiv:180909424
Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B (1998) Support vector machines. IEEE Intell Syst

Their Appl 13(4):18–28
Ho TK (1995) Random decision forests. In: Proceedings of 3rd international conference on document analy-

sis and recognition, IEEE, vol 1, pp 278–282
Jones SE (2008) The meaning of video games: Gaming and textual strategies. Routledge
Karvelis P, Gavrilis D, Georgoulas G, Stylios C (2018) Topic recommendation using doc2vec. In: 2018

International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–6
Lewis C, Whitehead J, Wardrip-Fruin N (2010) What went wrong: a taxonomy of video game bugs. In: Pro-

ceedings of the fifth international conference on the foundations of digital games, pp 108–115
Li C, Gandhi S, Harrison B (2019) End-to-end let’s play commentary generation using multi-modal video repre-

sentations. In: Proceedings of the 14th International Conference on the Foundations of Digital Games, pp 1–7
Lin D, Bezemer CP, Hassan AE (2017) Studying the urgent updates of popular games on the steam plat-

form. Empir Softw Eng 22:2095–2126
Lin D, Bezemer CP, Hassan AE (2019) Identifying gameplay videos that exhibit bugs in computer games.

Empir Softw Eng 24(6):4006–4033
MacFarland TW, Yates JM, MacFarland TW, Yates JM (2016) Mann–whitney u test. Introduction to non-

parametric statistics for the biological sciences using R pp 103–132
Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger

than the other. The annals of mathematical statistics pp 50–60
Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38(11):39–41
Murphy-Hill E, Zimmermann T, Nagappan N (2014) Cowboys, ankle sprains, and keepers of quality: How

is video game development different from software development? In: Proceedings of the 36th Interna-
tional Conference on Software Engineering, pp 1–11

Page 29 of 32 136Empirical Software Engineering (2023) 28:136

https://figshare.com/s/3de4d6958a57073dfa1b

1 3

Ozkok FO, Celik M (2017) A new approach to determine eps parameter of dbscan algorithm. Int J Intell
Syst Appl Eng 5(4):247–251

Python (2023a) Opencv. https:// opencv. org, [Online]
Python (2023b) spacy. https:// spacy. io/, [Online]
Python (2023c) Video-kf. https:// pypi. org/ proje ct/ video- kf/, [Online]
Ramchoun H, Ghanou Y, Ettaouil M, Janati Idrissi MA (2016) Multilayer perceptron: Architecture optimi-

zation and training. Int J Interact Multimed Artif Intell 4(1):26–30
Rong X (2014) word2vec parameter learning explained. arXiv preprint arXiv:14112738
Santos RE, Magalhães CV, Capretz LF, Correia-Neto JS, da Silva FQ, Saher A (2018) Computer games are

serious business and so is their quality: particularities of software testing in game development from
the perspective of practitioners. In: Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, pp 1–10

Scalabrino S, Bavota G, Russo B, Di Penta M, Oliveto R (2017) Listening to the crowd for the release plan-
ning of mobile apps. IEEE Trans Software Eng 45(1):68–86

Shah S, Guzdial M, Riedl MO (2019) Automated let’s play commentary. arXiv preprint arXiv:190902195
Souček T, Lokoč J (2020) Transnet v2: An effective deep network architecture for fast shot transition detection
Steam (2023a) Conan exiles. https:// store. steam power ed. com/ app/ 440900/ Conan_ Exiles/
Steam (2023b) Dayz. https:// store. steam power ed. com/ app/ 221100/ DayZ/
Steam (2023c) New world. https:// store. steam power ed. com/ app/ 10637 30/ New_ World/
Tang S, Feng L, Kuang Z, Chen Y, Zhang W (2018) Fast video shot transition localization with deep struc-

tured models. In: Asian Conference on Computer Vision, Springer, pp 577–592
Tian Y, Lo D, Lawall J (2014) Sewordsim: Software-specific word similarity database. In: Companion Pro-

ceedings of the 36th International Conference on Software Engineering, pp 568–571
Toy EJ, Kummaragunta JV, Yoo JS (2018) Large-scale cross-country analysis of steam popularity. In: 2018 Inter-

national Conference on Computational Science and Computational Intelligence (CSCI), IEEE, pp 1054–1058
Truelove A, de Almeida ES, Ahmed I (2021) We’ll fix it in post: What do bug fixes in video game update

notes tell us? In: 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE),
IEEE, pp 736–747

Wan T, Jun H, Zhang H, Pan W, Hua H (2015) Kappa coefficient: a popular measure of rater agreement.
Shanghai Arch Psychiatry 27(1):62

Wang Z, Bovik A, Sheikh H, Simoncelli E (2004) Image quality assessment: from error visibility to struc-
tural similarity. IEEE Trans Image Process 13(4):600–612. https:// doi. org/ 10. 1109/ TIP. 2003. 819861

Wen Z, Tzerpos V (2004) An effectiveness measure for software clustering algorithms. In: Proceedings.
12th IEEE International Workshop on Program Comprehension, 2004., IEEE, pp 194–203

Zhang Y, Jin R, Zhou ZH (2010) Understanding bag-of-words model: a statistical framework. Int J Mach
Learn Cybern 1(1):43–52

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.

Emanuela Guglielmi is a Ph.D student at the University of Molise,
Italy, and part of the Software Engineering and Knowledge Engineer-
ing (STAKE) Lab. She received her MSc. in Software Security from
University of Molise (Italy), Italy, in October 2021. Her research
interests include automated testing and recommender systems for
complex systems (e.g., virtual assistants and video games).

136 Page 30 of 32 Empirical Software Engineering (2023) 28:136

https://opencv.org
https://spacy.io/
https://pypi.org/project/video-kf/
https://store.steampowered.com/app/440900/Conan_Exiles/
https://store.steampowered.com/app/221100/DayZ/
https://store.steampowered.com/app/1063730/New_World/
https://doi.org/10.1109/TIP.2003.819861

1 3

Simone Scalabrino is a Research Fellow at the University of Molise,
Italy. He has received his MS degree from the University of Salerno,
and his PhD degree from the University of Molise, defending a thesis
on automatically assessing and improving source code readability and
understandability. His main research interests include code quality,
software testing, and empirical software engineering. He has received
three ACM SIGSOFT Distinguished Paper Awards at ICPC 2016,
ASE 2017, and MSR 2019. He is co-founder and CSO of Datasound,
a spin-off of the University of Molise. More information available at: \
url{https:// dibt. unimol. it/ sscal abrino/

Gabriele Bavota is an associate professor at the Faculty of Informat-
ics of the Universit\`a della Svizzera italiana (USI), Switzerland,
where he is part of the Software Institute and he leads the SEART
research group. He received the PhD in Computer Science from the
University of Salerno, Italy, in 2013. His research interests include
software maintenance and evolution, code quality, mining software
repositories, and empirical software engineering. On these topics, he
authored over 140 papers appeared in international journals and con-
ferences and has received four ACM Sigsoft Distinguished Paper
awards at the three top software engineering conferences: ASE 2013
and 2017, ESEC-FSE 2015, and ICSE 2015. He also received the
best/distinguished paper award at SCAM 2012, ICSME 2018, MSR
2019, and ICPC 2020. He is the recipient of the 2018 ACM Sigsoft
Early Career Researcher Award for outstanding contributions in the
area of software engineering as an early career investigator and the
principal investigator of the DEVINTA ERC project. More informa-
tion is available at: \url{https:// www. inf. usi. ch/ facul ty/ bavota/

Rocco Oliveto is a Full Professor at the University of Molise (Italy).
He is the founder of the Software Engineering and Knowledge Engi-
neering (STAKE) Lab of the University of Molise. Prof. Oliveto is
co-author of about 200 papers on topics related to software traceabil-
ity, software maintenance and evolution, and empirical software engi-
neering. He has received several awards for his research activity,
including 5 ACM SIGSOFT Distinguished Paper Awards and 3 Most
Influential Paper Awards. Prof. Oliveto participated in the organiza-
tion and was a member of the program committee of several interna-
tional conferences in the field of software engineering. Since 2018 he
has been CEO of Datasound srl, a spin-off of the University of Molise
that was created to conceive, design and develop innovative recom-
mendation systems to be applied in different contexts. More informa-
tion available at: \url{https:// dibt. unimol. it/ staff/ olive to/}.

Page 31 of 32 136Empirical Software Engineering (2023) 28:136

https://dibt.unimol.it/sscalabrino/
https://www.inf.usi.ch/faculty/bavota/
https://dibt.unimol.it/staff/oliveto/

1 3

Authors and Affiliations

Emanuela Guglielmi1 · Simone Scalabrino1 · Gabriele Bavota2 · Rocco Oliveto1

 Simone Scalabrino
 simone.scalabrino@unimol.it

 Gabriele Bavota
 gabriele.bavota@usi.ch

 Rocco Oliveto
 rocco.oliveto@unimol.it

1 STAKE Lab, University of Molise, C.da Fonte Lappone, 86090 Pesche, IS, Italy
2 Università Della Svizzera Italiana, Via Giuseppe Buffi 13, 6900 Lugano, Switzerland

136 Page 32 of 32 Empirical Software Engineering (2023) 28:136

http://orcid.org/0000-0002-5443-1303

	Using gameplay videos for detecting issues in video games
	Abstract
	Context
	Objective
	Method
	Results

	1 Introduction
	2 Background and Related Work
	2.1 Mining of Gameplay Videos
	2.2 Taxonomies of Video Game Issues

	3 GELID
	3.1 Video Segmentation
	3.2 Segment Categorization
	3.3 Context-based Segment Grouping
	3.4 Issue-based Segment Clustering

	4 Empirical Study Design
	4.1 Context Selection
	4.1.1 Training Data
	4.1.2 Components Validation Data (Test Set)

	5 Experimental Procedure
	5.1 Research Method for RQ1: Meaningfulness of Extracted Segments
	5.2 Research Method for RQ2: Segment Categorization Effectiveness
	5.3 Research Method for RQ3: Contextual Clustering Effectiveness
	5.4 Research Method for RQ4: Specific Issue-Based Clustering Effectiveness
	5.5 Replication Package

	6 Empirical Study Results
	6.1 RQ1: Interpretability and Atomicity of Gameplay Video Segments
	6.2 RQ2: Gameplay Video Segments Categorization
	6.3 RQ3: Clustering Gameplay Video Segments by Context
	6.4 RQ4: Clustering Gameplay Video Segments by Specific Issues

	7 Discussion
	8 Threats to Validity
	9 Conclusion
	References

