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Abstract
Context The game industry is increasingly growing in recent years. Every day, millions of 
people play video games, not only as a hobby, but also for professional competitions ( e.g., 
e-sports or speed-running) or for making business by entertaining others ( e.g., streamers). 
The latter daily produce a large amount of gameplay videos in which they also comment 
live what they experience. But no software and, thus, no video game is perfect: Streamers 
may encounter several problems (such as bugs, glitches, or performance issues) while they 
play. Also, it is unlikely that they explicitly report such issues to developers. The identified 
problems may negatively impact the user’s gaming experience and, in turn, can harm the 
reputation of the game and of the producer.
Objective In this paper, we propose and empirically evaluate GELID, an approach for 
automatically extracting relevant information from gameplay videos by (i) identifying 
video segments in which streamers experienced anomalies; (ii) categorizing them based on 
their type ( e.g., logic or presentation); clustering them based on (iii) the context in which 
appear ( e.g., level or game area) and (iv) on the specific issue type ( e.g., game crashes).
Method We manually defined a training set for step 2 of GELID (categorization) and a 
test set for validating in isolation the four components of GELID. In total, we manually 
segmented, labeled, and clustered 170 videos related to 3 video games, defining a dataset 
containing 604 segments.
Results While in steps 1 (segmentation) and 4 (specific issue clustering) GELID achieves 
satisfactory results, it shows limitations on step 3 (game context clustering) and, above all, 
step 2 (categorization).

Keywords Video games · Gameplay videos · Mining software repositories

1 Introduction

Video games are becoming an increasingly important form of expression in Today’s cul-
ture. Their sociological, economic, and technological impact is well recognized in the lit-
erature (Jones 2008) and their wide diffusion, particularly among the younger generations, 
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has contributed to the growth of the gaming industry in several directions. Playing video 
games is progressively becoming a work for many: Some play for professional competitions 
( e.g., in e-sports or speed-running), while others play to entertain others ( e.g., streamers) 
especially on dedicated platforms such as Twitch.1 Besides all challenges that are common 
to software systems, developing and maintaining video games pose additional difficulties 
related to complex graphical user interfaces, performance requirements, and higher testing 
complexity. Concerning the latter point, games tend to have a large number of states that 
can be reached through different choices made by the player. In such a context, writing 
automated tests is far from trivial due to the need for an “intelligent” interaction triggering 
the states exploration. Even assuming such ability to explore the game space, determining 
what the correct behavior is in a specific state usually requires human assessment, with the 
exception of bugs causing the game to crash. Finally, additional complexity is brought by 
the non-determinism that occurs in games because of multi-threading, distributed comput-
ing, artificial intelligence and randomness injected to increase the difficulty of the game 
(Murphy-Hill et al. 2014).

Because of the few automated approaches available for quality control in video game 
development (Santos et al. 2018), many games are released with unknown problems that 
are revealed only once customers start playing (Truelove et al. 2021). Since many stream-
ers daily publish hours of gameplay videos, it is very likely that some of them experience 
such issues and leave traces of them in the uploaded videos. For example, a gameplay 
video on the game Cyberpunk 20772 shows that the game crashes as soon as the player per-
forms a specific action. The large amount of publicly available gameplay videos, therefore, 
might be a goldmine of information for developers. Indeed, such videos not only contain 
information about which kinds of issues affect a video game, but they also provide exam-
ples of interactions that led to the issue in the first place, allowing its reproduction. In their 
seminal work on this topic, Lin et  al. (2019) defined an approach able to automatically 
identify videos containing bug reports. However, such an approach mostly relies on the 
video metadata ( e.g., its length) and it is not able to pinpoint the specific parts of the video 
in which the bug is reported. This makes it unsuitable as a reporting tool for game develop-
ers, especially when long videos, which are not uncommon, are spot as bug-reporting.

In this paper, we introduce GELID ( GamEpLay Issue Detector), an automated approach 
that aims at complementing the approach by Lin et al. (2019) by (i) automatically extract-
ing meaningful segments of gameplay videos in which streamers report issues, and (ii) 
hierarchically organize them. Given some gameplay videos as input, GELID (i) partitions 
them into meaningful segments that might contain bug reports, (ii) automatically distin-
guishes informative segments from non-informative ones by also determining the type of 
reported issue ( e.g., bug, performance-related), (iii) groups them based on the “context” 
in which they appear ( i.e., whether the issue manifests itself in a specific game area), and 
(iv) clusters fragments related to the same specific issue ( e.g., the game crashes when a 
specific item is collected).

We evaluate the four components of GELID in isolation, to understand to what extent 
it is possible to achieve the single goals we set, as we planned in our registered report pre-
sented at MSR 2022 (Guglielmi et al. 2022). We first extract training data for the machine 
learning model we use to categorize segments (step 2 of GELID). To this end, we used the 

1  https:// twitch. tv
2  https:// youtu. be/ ybvXz SLy9Ew? t= 1448
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approach by Lin et  al. (2019) to identify candidate videos from which we can manually 
label segments in which the streamer is reporting an issue. Then, we ran GELID on a set 
of real gameplay videos and validate its components. First, we manually determine to what 
extent the extracted segments are usable, by annotating their interpretability ( i.e., they 
can be used as standalone videos) and atomicity ( i.e., they can not be further split). Sec-
ond, we validate the categorization capabilities of GELID, both when trying to distinguish 
non-informative segments from informative ones (binary classification) and when trying 
to pinpoint the specific issue among logic, performance, presentation, balance, and non-
informative through a multi-class classifier. To this and, we compute typical metrics used 
to evaluate ML models ( i.e., accuracy and AUC). Finally, we evaluate to what extent the 
clusters identified in terms of context and specific issues are similar to the manually deter-
mined ones using the MoJoFM metric (Wen and Tzerpos 2004).

The remainder of this paper is organized as follows. In Section 2 we present the back-
ground needed for understanding the paper and some related work, based on which we 
also define the four specific categories of issues that GELID will identify. In Section 3, we 
present GELID and its four components in details. In Section 4 we describe the empirical 
study design, while in Section 6 we report the obtained results. In Section 7 we discuss the 
results, while in Section 8 we report the threats to validity. Section 9 concludes the paper.

2  Background and Related Work

The large efforts that game developers invest in the game development process do not 
always allow them to discover or fix all the bugs in a game before releasing it to the market. 
Several works have focused the attention on the quality assurance of video games analyzing 
the differences between traditional software development and video games development 
(Murphy-Hill et al. 2014; Santos et al. 2018). Many studios employ discussion forums or 
specific features in their games for gamers to report bugs ( e.g., Steam Community). Pre-
vious work shows that 80% of the Steam games release urgent updates to fix issues such 
as feature malfunctions or game crashes (Lin et al. 2017). The large amount of gameplay 
videos continuously produced and publicly released by many gamers on platforms such as 
Twitch and YouTube could be helpful to developers: Sometimes, gamers indirectly report 
issues while they play. Since GELID aims to support video game developers by extracting 
information from gameplay videos, the discussion focuses mainly on approaches aimed at 
extracting and manipulating gameplay videos for different purposes. In addition, since our 
approach aims to automatically categorize video segments, we also discuss existing tax-
onomies of video game topics that we use as a starting point for defining our categories.

2.1  Mining of Gameplay Videos

Some works targeted the automated generation of a comprehensive description of what 
happens in gameplay videos ( i.e., game commentary). Examples of these works are the 
framework by Guzdial et al. (2018) and the approach presented by Li et al. (2019) mod-
eling the generation of commentaries as a sequence-to-sequence problem, converting video 
clips to commentary. On the same line of research, an approach to generate automatic com-
ments for videos by using deep convolutional neural networks was presented by Shah et al. 
(2019). Lewis et al. (2010) described the gameplay videos as “a rich resource.” The main 
goal of GELID is to detect issues in gameplay videos. To the best of our knowledge, the 
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only work aimed at achieving a similar goal is the one by Lin et al. (2019). The authors 
conducted an in-depth study of gameplay videos posted by players on the Steam plat-
form aiming at automatically identifying the ones that report bugs. They observe that 
nave approaches based on keywords matching are inaccurate. Therefore, they propose an 
approach that uses a Random Forest classifier (Ho 1995) to categorize gameplay videos 
based on their probability of reporting a bug. Lin et al. (2019) rely on Steam3 to find videos 
related to specific games. While Steam is mainly a marketplace for video games, it also 
allows users to interact with each other and share videos. On a daily basis, for 21.4% of the 
games on Steam, users share 50 game videos, and a median of 13 h of video runtime Lin 
et al. (2019). Still, their approach works at video-level, and manually watching long game-
play videos classified as buggy still requires a considerable manual effort since a whole 
video can even last several hours. Also, they only distinguish bug-reporting videos from 
non-bug-reporting ones, without a more specific classification regarding the type of issue 
reported ( e.g., glitch or logic bug). We fill this gap and further aid developers by classify-
ing the video segment according to the type of problem encountered, and by trying to clas-
sify video segments ( i.e., parts of videos) instead of whole videos. To achieve this goal, 
GELID augments the provided information, by including also (i) the type of issue found, 
(ii) the context ( i.e., area of the game) in which it occurred, and (iii) other segments in 
which the same issue was reported (possibly from different videos).

2.2  Taxonomies of Video Game Issues

Video games can suffer from a vast variety of problems. Lin et al. (Lin et al. 2019) do not 
distinguish among the types of issues reported in the videos identified as “bug reporting”, 
while this is one of our goals.

To determine meaningful categories in which it is worth categorizing video segments, 
we rely on a recent taxonomy of issues in video games introduced by (Truelove et al. 2021) 
(which extends the one by (Lewis et al. 2010)). In their taxonomy, the authors reports 20 
different kinds of issues.

We use such a taxonomy as a base to define the labels we want to assign to the video 
segments. However, all such labels might be counterproductive since it is likely to observe 
a long-tail distribution ( i.e., a few types of issues appear in most of the video fragments, 
while several other issues are quite rare or do not even appear). Therefore, starting from 
such a taxonomy, we define macro-categories by clustering similar fine-grained catego-
ries. We identified four labels, as reported in Table 1: Logic, Presentation, Balance, and 
Performance.

3  GELID

GELID takes as input a set of gameplay videos related to a specific video game and returns 
a hierarchy of segments of gameplay videos organized on three levels: (i) context ( e.g., 
level or game area), (ii) issue type ( e.g., bug or glitch), and (iii) specific issue ( e.g., game 
crashes when talking to a specific non-player character).

3  https:// steam commu nity. com/
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Figure 1 shows an overview of the GELID workflow. We describe below in more detail 
the main steps of GELID.

3.1  Video Segmentation

The first step of GELID consists in partitioning the video into meaningful segments that 
can be later analyzed as standalone shorter videos. In the computer vision literature, a simi-
lar problem is referred to as “shot transitions detection” Souček and Lokoč (2020). The 
aim is to detect sudden changes in the video content. An example of approaches defined 
to solve such a problem is the one introduced in (Tang et al. 2018). Video-related informa-
tion, however, might not be sufficient to find cuts in gameplay contents. In the context of 
video segmentation, relying only on scene changes to identify meaningful segments may 
not be sufficient. Scene changes may be due to various minor factors, e.g., rapid zoom into 
the viewfinder of a weapon and then back to the general framing of the scene. Such situa-
tions do not provide significant information for identifying potential issues. Furthermore, 
in some contexts, scene changes may not be evident, leading to the creation of very large 
segments that are difficult to analyse. Let us consider, for example, the gameplay video 
available at https:// www. youtu be. com/ watch? v=_ kQIJ2 Omy9w: From 14:10 to 15:56 there 
is no shot transition, even though various separate events and actions occur. Moreover, for 
example, if the game crashes and a shot transition detection approach is used to cut the 
video, the second in which the crash happens would probably be selected for segmentation. 
The streamer, however, might need a few seconds to react to such an event by commenting 

Table 1  Mapping between types of issues identified by GELID and categories from the taxonomy by True-
love et al. (Truelove et al. 2021)

Issue Type Description Categories (Truelove et al. 2021)

Logic Issues related to the game logic, regardless of how infor-
mation is presented to the player

Object Persistence
Collision of Objects
Inter. btw. Obj. Prop
Position of Object
Context State
Crash
Event Occurrence
Interrupted Event
Triggered Event
Action
Value

Presentation Issues related to the game interface (graphical- or audio- 
related)

Game Graphics
Information
Bounds
Camera
Audio
User Interface

Balance Detrimental aspects in terms of “fun” Artificial Intelligence
Exploit

Performance Performance-related issues ( e.g., FPS drops) Implem. Response
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what happened providing useful information for the game developers. Thus, by using shot 
transitions as cut points, the spoken content related to the issue might be erroneously put 
in the subsequent segment. To solve this problem, we decided to mainly rely on the spoken 
content to decide the cut points in the video: The core idea is to get the points in which 
each subtitle entry ( i.e., units of text shown on the screen) begins and ends, slightly shifted 
by t seconds (where t is a parameter of the approach) to take into account the reaction time 
of the streamer, and thus consider the video in-between as a segment. As for the shifting 
operation, given a subtitle entry that starts at second s and ends at second s + d (where d 
is the duration of the subtitle entry), our approach will extract the video segment between 
max(s − t, 0) and min(s + d + t, videolength) . For example, consider the case where we set 
t = 5 and we detect a subtitle entry that starts at 13:45 (mm:ss) and lasts 3 s. Our approach 
will cut the video between 13:40 and 13:52. We report in Section  4 how we tune the t 
parameter.

As a result, our segmentation approach will implicitly discard some parts of the input 
video ( i.e., the ones in which the streamer is not speaking) and it might put some parts of 
the video in many segments when t > 0 ( e.g., for contiguous subtitle entries). Also, it is 
worth noting that using this strategy might result in a very high number of extracted seg-
ments for each video since subtitle entries generally include only parts of a sentence: In 
subtitles, a given sentence is broken into several entries to allow the watcher to comfort-
ably read each of them. To preliminarily exclude segments that most likely do not contain 
any piece of useful information and, thus, to reduce the effort for the next step, we use a 
keyword-matching approach. If at least a relevant keyword is found in the subtitle entry 
related to a given segment, we consider the segment, while we exclude it otherwise.

To define the list of keywords, we relied on (i) the 12,122 change notes of video games 
used by Truelove et al. (2021) to define the taxonomy of the most frequently encountered 
problems in video games and (ii) the 996 titles and descriptions of the gamplay videos in 

Fig. 1  The workflow of GELID
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the dataset defined by Lin et al. (2019). One of the authors manually extracted, from each 
instance, a first set of keywords (also composed by more than a word) which were related 
to issues in video games ( e.g., “glitch” or “bug”). As a result of this process, 161 basic 
keywords were identified the file containing the selected keywords is reported in the repli-
cation pacakage (Guglielmi et al. 2023). From such keywords, we automatically generated 
new semantically equivalent keywords to have a broader dictionary. To do that, we first 
tokenized the keywords and automatically tagged the Part-of-Speech (PoS) by using the 
spaCy Python package (Python 2023b). Then, for each token with its PoS tag, we used 
both WordNet (Miller 1995) and SEWordSim (Tian et al. 2014) to generate both general-
purpose and domain-specific synonyms of each word. At this point, for each keyword 
composed by the sequence of words ⟨w1,… ,wn⟩ , we combined all the synonyms of each 
word and generated the new set of candidate keywords by using the Cartesian product: 
{syn(w1) ×⋯ × syn(wn)} . For example, given the initial keyword “lag”, we generated the 
candidate alternative keywords “stuttering”, “FPS drop”. From the initial 161 identified 
keywords, we obtained a total of 207 candidate keywords. Then, two of the authors inde-
pendently validated the new keywords to discard the ones that were not related to issues in 
video games. In case of disagreement, they discussed to reach consensus. In the end, we 
added 96 new keywords, while 111 were discarded. In our analysis, we assessed the inter-
rater reliability between the annotators involved in identifying keywords by calculating 
Cohen’s Kappa coefficient. The obtained results indicate an agreement level of k = 0.74 . 
The coefficient value of 0.74 indicates a good level of agreement between the annotators 
in terms of identifying the keywords. For example, the keyword “crash” generated from 
“break up” was discarded. Thus, our final list of keywords is composed of 257 keywords 
which can be mapped to our replication package (Guglielmi et al. 2023).

3.2  Segment Categorization

In this second step, GELID aims at categorizing segments based on their content. GELID 
considers five labels: One for non-informative segments ( i.e., the ones not reporting 
issues), and four for informative segments ( i.e., the ones reported in Table 1). Non-inform-
ative segments are discarded and not considered in the next steps.

Previous work successfully used machine-learning to solve similar classification prob-
lems in the context of mobile app reviews (Chen et al. 2014; Scalabrino et al. 2017). Such 
approaches mainly rely on textual features. In our context, we can extract information that 
could also help to correctly classify segments from video analysis. For example, segments 
without video might be more likely to be non-informative, even if a reader comment is 
present. Therefore, we include in GELID also video-based features. More specifically, 
we extract five sets of features: Three of them only based on the subtitles ( i.e., what the 
streamer says), one of them based on the video ( i.e., what happens in the game), and one 
of them including the best set of textual features and the set of video-based features.

Textual Features As for the textual features, we consider Bag of Words (BoW) (Zhang 
et al. 2010), doc2vec (d2v) (Karvelis et al. 2018) and word2vec (w2v) (Rong 2014). BoW 
consists in detecting the dictionary of the training set and using each word of the diction-
ary as a feature. The value of each feature for a given instance corresponds to the number 
of times the related word appears in an instance. The number of features directly depends 
on the training set. In our case, given the training set described in Section 4.1, we extracted 
2,253 features. The d2v model (Karvelis et  al. 2018) allows to automatically extract a 
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vector of features for an entire instance (document). Such a model allows to automatically 
represent a document (sequence of words) as a vector. Specifically, we represent each sub-
title string for each identified segment as a vector composed of 40 features since this is the 
default number of features extracted by such a model (Karvelis et al. 2018). Finally, the 
w2v model (Rong 2014) allows to represent a single word as a set of features. Thus, dif-
ferently from doc2vec, it does not directly work at document-level. To define the features 
based on w2v, given all the words in a given instance, we extract the vectors through the 
w2v model and we compute the average of each feature. In this case, we represent each 
word as a vector of 300 features, again, because the w2v model extracts by default such a 
number of features (Rong 2014).
Video‑based Features With video-based features, instead, we mainly wanted to repre-
sent to what extent the video contains unexpected frames that could possibly be related 
to issues. To this aim, given each pair of subsequent frames fi and fi+1 : (i) we compute 
their structural similarity through SSIM (Wang et al. 2004), i.e., si = SSIM(fi, fi+1) ; (ii) we 
extract their HSV histograms using the HISTCMP CORREL function of OpenCV Python 
(2023a), thus obtaining h(fi) and h(fi+1) ; (iii) we then compute their Pearson correlation 
coefficient hsvi = cor(h(fi), h(fi+1)) . We use SSIM instead of other image similarity meas-
ures because it has been shown that such a metric best captures the similarity of images as 
perceived by humans (Wang et al. 2004). Since such a metric ignores colors but considers, 
by default, a black-and-white version of the image, we also use HSV histograms to detect 
differences in the colors. Finally, given the vectors of values hsv and s for all the frames 
between 0 and n (number of frames in the video), we aggregate their values and define 12 
video based features by computing the mean, median, minimum, maximum, first quartile, 
and third quartile of both of them. Such features allow us to inform the model about the 
distribution of such vectors. For example, let us imagine that the game crashed: the frame 
fi before the crash is very similar to the previous ones, while the next frame, fi+1 is different 
from fi . As a result, both hsvi and si will be very high. Two of our features ( i.e., the max of 
both the vectors) will reflect this information.

Given a training set of labeled video segments, we extract the features and train a ML 
classifier. Given an input (unknown) video segment, we extract the same features used to 
train the model, given the resulting vector as input to the trained ML model, and obtain the 
predicted label. We describe in Section 4 how we built the training set and how we select 
the best ML algorithm for this task among Random Forest (Ho 1995), Logistic Regression, 
SMO (Hearst et al. 1998), Multilayer Perceptron (Ramchoun et al. 2016) and IBk (Choud-
hury and Bhowal 2015).

3.3  Context‑based Segment Grouping

After having collected and categorized segments that contain anomalies ( i.e., the ones 
classified as informative, i.e., as logic, presentation, performance, or balance), we 
group them according to their context. With “context” we refer to the part of the game ( 
e.g., a specific game level or area) in which the anomaly occurred. This may be helpful 
to provide the videos to the team in charge of the development of that specific part of 
the game. Such a step is important for two reasons: (i) Developers analyzing hundreds 
of videos related to a specific game may experience information overload and this, in 
turn, would reduce the effectiveness of the video segments filtering step; (ii) Knowing 
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the context in which more anomalies occur allows the developer to identify where atten-
tion needs to be focused to improve the gaming experience.

To achieve this goal, we rely on video information: The assumption is that videos 
with similar frames regard, most likely, the same context. First, we extract the key 
frames from each segment by using the Video-kf Python package (Python 2023c). Then, 
we define a summary frame of the whole segment by computing a pixel-by-pixel aver-
age of the previously identified key frames. Such a frame will roughly represent the con-
tent of the segment and, ideally, it can allow to visually represent the game area. We use 
a clustering algorithm to group summary frames (and, thus, the associated segments). 
More specifically, given a distance function between two images (summary frames, in 
our case), we define a distance matrix which contains the distances between each couple 
of summary frames and use it to cluster them.

We test two similarity metrics (which are also used for computing the video-based 
features in the previous step): Structural similarity (SSIM) Wang et  al. (2004), com-
puted on each pair of summary frames, and the correlation between the HSV histograms 
extracted from each pair of summary frames. Note that both of them are similarity met-
rics, while clustering algorithms require to indicate the distances between instances. 
Since both of them are bounded in the range [0, 1] , we simply transform them in dis-
tance metrics by computing 1 − s (where s is the value of the similarity metric).

Since the number of scenes is not necessarily known a priori, we use a non-para-
metric clustering technique. We describe in Section 4 how we select the best clustering 
algorithm between the two we tested, i.e., DBSCAN (Ester et  al. 1996) and OPTICS 
(Ankerst et al. 1999), and the best distance metric between SSIM and HSV histogram 
correlation.

3.4  Issue‑based Segment Clustering

A set of video segments of the same kind ( e.g., bugs) and reported in the same context 
might still be hard to manually analyze for developers. For example, if 100 segments 
report bugs for a given level, developers need to manually analyze all of them. It might 
be the case, however, that most of them report the same specific bug ( e.g., a game 
object disappears). To reduce the effort required to analyze such information, we cluster 
segments reporting the same specific issue. This would allow developers to analyze a 
single segment for each cluster to have an overview of the problems affecting the spe-
cific area of the game.

To achieve this goal, we represent the instances ( i.e., video segments) by using both 
textual and image-based features and, as in the previous step, we use non-parametric clus-
tering to create homogeneous groups. Textual features can help grasping the broad context 
( e.g., objects disappearing or anomalous dialogues). Image-based features can help find-
ing visually similar problems ( e.g., in the case of glitches). To this aim, we represent each 
instance (video segment) using the set of features from the categorization step that allows 
to obtain the best results for that task (as we report in Section 6). Differently from the pre-
vious step, indeed, we do not pre-compute the distance matrix. This allows us to test this 
task not only with DBSCAN (Ester et al. 1996) and OPTICS (Ankerst et al. 1999), but also 
with Mean Shift (Fukunaga and Hostetler 1975), which, differently from the previously-
mentioned algorithms, does not allow to directly use a distance matrix. Also in this case, 
we describe in Section 4 how we select the best clustering algorithm among them.
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4  Empirical Study Design

The goal of our study is to evaluate the effectiveness of the four steps of GELID, i.e., (i) 
extraction of meaningful video segments from gameplay videos (ii) accuracy in categoriz-
ing extracted video segments, (iii) capability of clustering video segments about the same 
gameplay area, and (iv) ability to correctly cluster segments reporting the same specific 
issue. The context of the study consists of a total of 275 gameplay videos.

Our study is steered by the following research questions (RQs).

RQ1: How meaningful are the gameplay video segments extracted by GELID?

The first RQ aims at evaluating the quality of the segments extracted by GELID from 
gameplay videos in terms of their interpretability and atomicity. It aims at evaluating the 
“video segmentation” step described in Section 3.1.

RQ2: To what extent is GELID able to categorize gameplay video segments?

With this second RQ we want to understand which features and which classification 
algorithm allow to train the best model for categorizing gameplay video segments both in 
two classes (informative and non-informative, like previous work Lin et al. (2019) and five 
classes (logic, presentation, performance, balance, and non-informative). We also want 
to understand to what extent the best models for the two categorization problems would 
allow to achieve useful results in practice.  RQ2 evaluates the “segment categorization” step 
described in Section 3.2.

RQ3: What is the effectiveness of GELID in grouping gameplay video segments by con-
text?

In the third RQ, we aim to understand what the best clustering algorithm is for grouping 
segments based on the game context, and how effective such an algorithm is in absolute 
terms. This RQ evaluates the clustering step described in Section 3.3.

RQ4: What is the effectiveness of GELID in clustering gameplay video segments based 
on the specific issue?

Similarly to  RQ3,  RQ4 aims at understanding which features and clustering algorithm 
allow to achieve the best results for clustering segments based on the specific issue, and 
how effective such an algorithm is in absolute terms. This RQ evaluates the clustering step 
described in Section 3.4.

4.1  Context Selection

To the best of our knowledge, there are no large-scale, publicly available databases of 
gameplay videos that provide meaningful information on the classification of problems 
in video games through subtitle analysis. To answer our RQs and validate the defined 
approach, we rely on gameplay videos from YouTube. While other platforms, even more 
video game-oriented, could be used ( e.g., Twitch), YouTube provides APIs for searching 
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videos of interest and it also allows to download videos including subtitles, which are 
required by GELID. While subtitles can be automatically generated when the video lacks 
them, the results could be noisy and, in this phase, we evaluate GELID assuming high-
quality input data. In our study, we collect three datasets, and the criteria used to search 
for gameplay videos of interest depend on the dataset at hand (explicited in the subsections 
below).

The first dataset is composed by video segments, and we use it used for training the 
supervised model used in step 2 of GELID ( i.e., segment categorization). We also use this 
dataset to select the best model for answering RQ 2 . The second one is composed by com-
plete videos, and we use it for evaluating the single components of GELID and answer RQ 
1−4 . The third one is a smaller dataset used to evaluate the parameters to be used in the dif-
ferent feature extraction and machine-learning techniques. We publicly release all datasets 
in our replication package Guglielmi et al. (2023).

4.1.1  Training Data

Our goal is to build a training set of labeled segments containing at least 1,000 instances 
and covering all the issue types GELID is able to identify. To select videos possibly useful 
to build our training set, we used the YouTube Search APIs.4 Specifically, we ran a query 
using the same keywords used by Lin et al. (2019), i.e., “bug”, “hack”, “glitch”, “hacker”, 
“cheat”, and “cheater”. For each keyword, we retrieved a list of videos matching it. We also 
added a filter to exclude videos without subtitles or with subtitles in languages different 
from English since GELID relies on NLP-based features computed on them. Some You-
Tube videos have manually-defined subtitles, while others have automatically generated 
ones. We include both of them. Indeed, while it is possible that the second category con-
tains errors, this risk also exists in manually generated ones. Also, the quality of the sub-
titles generated by YouTube is generally quite high for the English language. As a result, 
we obtained 3,540 videos. Since some videos were present in more than a list ( i.e., they 
matched different keywords), we removed duplicates and obtained 3,196 videos. We report 
in Table 2, for each keyword, the number of videos retrieved and filtered, along with the 
number of extracted segments. Note that the number of segments might be lower than the 
number of filtered videos because a video might not contain valid keywords in the subtitles 
even though it contains them in other metadata, such as the title.

Our premise is that several gameplay videos report issues. However, issue-reporting 
videos represent a minority of the entire gameplay videos population (thus the relevance 
of our research). Therefore, to support the construction of the dataset containing training 
data for the categorization step, we relied on the approach defined by Lin et  al. (2019) 
and consider only videos identified as issue-reporting. Specifically, we re-implemented 
their approach (since it is not publicly available) and, for each video retrieved as previously 
described, we ran the approach and discarded the videos classified as non-issue-reporting. 
As a result, we kept 1,534 videos. We shuffled such videos and manually analyzed them 
one by one to extract and label segments. One of the authors manually split each video 
into meaningful segments, and two of the authors manually labeled each segment as logic, 
presentation, balance, performance, or non-informative (when the segment does not 
report any issue). Specifically, in order to manually split the video into segments, one of the 

4 https:// devel opers. google. com/ youtu be/ v3
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authors carefully watched each gameplay video, covering its entire duration. During this 
process, the author noted down the specific starting and ending times (in seconds) for each 
segment that they identified within the video. The identification of significant segments 
was guided by a specific criterion based on the classification outlined in Table 1, which can 
be found in Section 2.2. With the phrase “meaningful segments” we mean video segments 
that can be analyzed independently as shorter videos and contain enough information that 
can help achieve the objectives of GELID. To determine whether a segment is “meaning-
ful,” as we report later, we use the principles of interpretability (to what extent humans can 
get information from the segment) and atomicity (to what extent the segment contain only 
the information related to a single issue). At this stage, we discarded segments reporting 
more than an issue at a time. Given the large quantity of videos available compared to the 
target number of segments we had in mind, we decided to make sure that the training set 
was diverse in terms of video games considered. Thus, if we noticed that a video game was 
already taken into account in several videos previously analyzed, we avoided to analyze 
more videos of it. In total, we manually analyzed 170 gameplay videos, totaling about 17 h 
of gameplay. As a result, we identified and labeled 1,255 video segments.

Specifically, we obtained 693 non-informative video segments ( ∼ 55.2%), 305 video 
segments reporting presentation-related problems ( ∼ 24.3%), 169 video segments report-
ing logic problems ( ∼ 13.5%), 47 video segments with balance problems ( ∼ 3.7%), and 
41 video segments highlighting performance problems ( ∼ 3.3%). Given the nature of the 
problem at hand, as we expected, the dataset is imbalanced, with a great majority of seg-
ments being non-informative and a very small percentage of them reporting balance- and 
performance-related issues.

4.1.2  Components Validation Data (Test Set)

To select videos on which we validate the single components of GELID, we focused on a 
small set of video games. We did this because the third and fourth steps of GELID are rea-
sonable only when segments from the same video game are considered. To select the video 
games to use, we rely on the information available on Steam, one of the largest video game 
marketplaces (Toy et al. 2018). Based on information obtained from Steam we select three 
video games that are both popular ( e.g., for which many gameplay videos exist) and that 
had several reported issues ( e.g., for which GELID gives the best advantage). More spe-
cifically, we select video games with many downloads and low review scores. To do this, 
we first retrieved the list of the top 100 most downloaded games on Steam, as reported in 
Table 4. Then, we excluded the games with very positive or better reviews ( i.e., we kept the 
ones with “mostly positive” reviews or lower). We preliminarily analyzed a random sample 

Table 2  Number of videos 
retrieved for each keyword

Keyword #Videos 
Retrieved

#Filtered Videos #Segments

bug 594 514 691
glitch 509 487 282
hack 514 155 64
hacker 502 115 66
cheat 528 145 112
cheater 549 118 40
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of 10 gameplay videos for each video game after this filter using the YouTube search fea-
ture. If we found no gameplay videos reporting issues, we discarded the video game. Then, 
for all the remaining video games, we used the YouTube Search APIs to search for “video-
game-name gameplay video”. We applied filters to select only videos with English subtitles 
(either manually added or automatically generated) and with medium (4-20 min) and long 
(+ 20 min) duration, with the aim of excluding non-informative videos representing game 
trailers or identifying a compilation of issues (which, instead, were useful to build the train-
ing set). Finally, we selected the three video games with the highest number of gameplay 
videos retrieved, i.e., Conan Exiles (Steam 2023a), DayZ (Steam 2023b) and New World 
(Steam 2023c). In total, we obtained 80 gameplay videos, totaling about 45 h of gameplay.

Since manually splitting the entire videos would have been very demanding, we decided 
to partially rely on the first step of GELID. More specifically, we identified in the subtitles 
the keywords selected for the segmentation step. Then, one of the authors manually seg-
mented the video near those points to select a first set of possibly relevant segments, and 
two of the authors independently manually categorized and clustered them both based on 
the context and on the specific issue (only for informative videos). The two annotators dis-
cussed conflicts to reach consensus. In total, we identified 604 video segments, distributed 
as depicted in Table 3. It is worth noting that we were able to identify only a few balance-
related segments (4 in total, with DayZ having none of them) (Table 4).

5  Experimental Procedure

We summarize in Fig. 2 our plan for answering the four research questions, and we provide 
the details below.

5.1  Research Method for  RQ1: Meaningfulness of Extracted Segments

To answer  RQ1, we evaluate the technique we defined with different values of t (streamer 
reaction times). Specifically, we instantiate our approach with t in the set {0, 5, 10} sec-
onds. We ran the first step of Video Segmentation on selected gameplay videos for each 
video game in the test set, collecting a total of 101 video segments. Note that the number of 
extracted segments is lower than the number of videos because some videos might not con-
tain any keyword we use in the Video Segmentation step to retrieve candidate relevant seg-
ments (see Section 3.1). Consequently, if a video does not contain any of these keywords, 
no segment is extracted from it.

We evaluated the segments detected by each variant of our approach in terms of their 
(i) interpretability ( i.e., it is possible to watch the segment and acquire all the information 

Table 3  Distribution of issue types (logic , presentation , performance , balance , and non-
informative ) for each video game considered in the test set

Video Game Total

Conan Exiles 37 109 10 1 157 314
DayZ 7 67 16 0 90 180
New World 2 44 6 3 55 110
Total 46 220 32 4 302 604
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Table 4  Top 100 most popular games on Steam and related summary review scores (“Overwhelmingly Pos-
itive” ✔✔✔, “Very Positive” ✔✔, “Mostly Positive” ✔, “Mixed” ~ , and “Mostly Negative” ✖)

Video game Review Video game Review

CS:GO ✔✔ BeamNG drive ✔✔✔
Pubg  ~ Counter strike ✔✔✔
Dota 2 ✔✔ RimWorld ✔✔✔
GTA V ✔✔ World of Tanks Blitz ✔✔
Tom Clancy’s Rainbow SixÂ® Siege ✔✔ The Elder Scrolls V: Skyrim Special Edition ✔✔
Team fortress 2 ✔✔ NARAKA Bladepoint ✔
Terraria ✔✔✔ Hunt: Showdown ✔✔
Garry’s Mod ✔✔✔ Civilization V ✔✔✔
Rust ✔✔ Project Zomboid ✔✔
Apex ✔✔ Factorio ✔✔✔
Wallpaper Engine ✔✔✔ Smite ✔
The WitcherÂ® 3: Wild Hunt ✔✔✔ The elder scrolls online ✔✔
Warframe ✔✔ theHunter: Call of the Wildâ„¢ ✔✔
Destiny 2 ✔✔ Age of Empires II: Definitive Edition ✔✔
Cyberpunk 2077 ✔ Satisfactory ✔✔✔
Dead by Daylight ✔✔ Stellaris ✔✔
ARK ✔✔ Fifa 22 ✔✔
Elden ring ✔✔ Forza Horizon 5 ✔✔
Stardew Valley ✔✔✔ Squad ✔✔
Euro track simulator 2 ✔✔✔ The sims 4 ✔✔
Rocket League ✔✔ Europa Universalis IV ✔✔
Phasmophobia ✔✔✔ Scum ✔
Payday 2 ✔✔ Stumble Guys ✔✔
The forest ✔✔✔ Assetto Corsa ✔✔
War Thunder ✔ Conan Exiles ✔
Valheim ✔✔✔ FINAL FANTASY XIV ONLINE ✔✔
Brawlhalla ✔✔ Crusader Kings III ✔✔
Red dead redemption 2 ✔✔ Yugioh Master Duel ✔
DayZ ✔ Left for dead ✔✔✔
Don’t Starve together ✔✔✔ eFootball 2023 ✖
Sea of thieves ✔✔ Black desert ✔
New World  ~ Soundpad ✔✔✔
Geometry Dash ✔✔ Total War: Warhammer 3 ✔
Bloons TD 6 ✔✔✔ Fallout 76 ✔
The binding of Isaac: Rebirth ✔✔✔ Warhammer 40,000: Darktide  ~ 
Path of exile ✔✔ Moster Hunter Rise ✔✔
Hades ✔✔✔ Coockie clicker ✔✔✔
Fallout 4 ✔✔ EA SPORTS™ FIFA 23  ~ 
VR Chat ✔ Farming Simulator 22 ✔✔
Lost Ark ✔ Victoria 3  ~ 
Civilization VI ✔✔ Goose Goose Duck ✔✔
days to die ✔✔ Undecember  ~ 
Mount Blade II: Bannerlord ✔✔ Mir4  ~ 
Vampire Survivors ✔✔✔ Footbal Manager 2022 ✔✔
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needed to understand what has been experienced by the streamer) (ii) the atomicity ( i.e., 
it is not possible to further split the segments). Such aspects are complementary: It would 
be possible to maximize the interpretability by creating few segments ( e.g., just one for 
the whole video); this, however, would result in lower atomicity since the segments could 
be further divided into parts. While we would have ideally wanted to capture the “qual-
ity” of segments as a whole, it is quite hard to define a precise metric for such a com-
plex aspect. Thus, we preferred to use two specific and easy-to-evaluate aspects instead. 
Concerning the relationship between such aspects and quality as a whole, we can say that, 
given two segments A and B, if interpretability(A) > interpretability(B) and atomicity(A) > 
atomicity(B), then quality(A) > quality(B). On the other hand, if we have conflicting situ-
ations ( e.g., interpretability(A) < interpretability(B) and atomicity(A) > atomicity(B)), we 
can not say whether the quality of A is greater or lower than the quality of B.

Two of the authors watched the segments generated by each variant, for a total of 303 
evaluations, and manually annotated each segment in terms of its interpretability and ato-
micity on a 5-point Likert scale. As for the first metric, we evaluated to what extent we 
could fully understand what is happening based only on the segment itself. As for atomic-
ity, instead, we assessed whether the segment can be further divided in additional stan-
dalone (fully interpretable) segments. The final score was computed as 5 minus the number 
of additional standalone segments that could be further extracted, or 1 if more than four 
standalone segments were found. Each of the 303 manually analysed slices was indepen-
dently inspected. We report the inter-rater reliability between the annotators by using the 

Table 4  (continued)

Video game Review Video game Review

Cities: Skylines ✔✔ Dwarf fortress ✔✔✔
TmodLoader ✔✔✔ Nba 2K23  ~ 
Arma 3 ✔✔ Project: Playtime  ~ 
Deep rock Galactic ✔✔✔ Divinity: Original Sin 2—Definitive Edition ✔✔✔
Hearth of Iron IV ✔✔ Paragon the Overprime  ~ 
Call of Duty®: Modern Warfare® II  ~ Football Manager 2023 ✔✔

X

X

X

RQ1: Segmentation RQ2: Categorization RQ3: Clustering (context) RQ4: Clustering (issue)Component Evaluation Dataset

Manual evaluation of the
segments in terms of
interpretability and
atomicity

Evaluation of the model in
terms of accuracy, recall,
precision, F1-score, and
AUC

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Game selection by using
information available on
Steam; gameplay video
selection from YouTube

Manual clustering Manual clustering

X

X

X

GELID GELID

Gameplay video sample selection from YouTube; filtering with the approach
defined by Lin et al.; manual segmentation of the videos; manual
categorization of each segment

Manual categorization

X

Training Set

GELIDGELID
segmentation

GELID
categorization

GELID
ctx. clustering

GELID
iss. clustering

Fig. 2  Summary of the study design
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Cohen’s kappa coefficient (Cohen 1960; Wan et  al. 2015). Then, for each segment, we 
compute the mean interpretability and atomicity. Finally, we compare the tested techniques 
in terms of such metrics using a Mann–Whitney U test (Mann and Whitney 1947; MacFar-
land et al. 2016), and adjusting the p-values resulting for multiple comparisons using the 
Benjamini and Hochberg procedure (Benjamini and Hochberg 1995). We also report the 
effect size, using the Cliff’s delta (Cliff 1993), to understand the magnitude of differences 
observed.

5.2  Research Method for  RQ2: Segment Categorization Effectiveness

To answer  RQ2, we use all the three datasets previously described. We aimed at evaluating 
not only the complete approach on a multi-class categorization problem (the four informa-
tive classes reported in Table 1, plus the non-informative class), but also its version on a 
simplified version of the same problem, i.e., a binary classifier (informative, non-informa-
tive) like the one defined by Lin et al. (2019). It is worth noting, however, that we could not 
compare our results with the ones obtained with such an approach because it is designed to 
work only on entire videos, not on segments.

As a first step, we aimed at selecting (i) the best machine learning algorithm, (ii) the best 
set of features, and (iii) the best preprocessing pipeline for categorizing gameplay video seg-
ments in both scenarios. As candidate machine learning algorithms, we selected Random 
Forest (Ho 1995), Logistic Regression, SMO (Hearst et  al. 1998), Multilayer Perceptron 
(Ramchoun et  al. 2016) and IBk (Choudhury and Bhowal 2015). We used the implemen-
tations available in the Weka toolkit.5 At this stage, we used the default hyperparameters 
available in Weka for each of them. As candidate set of features, as explained in Section 3, 
we considered three textual-based sets of features (Bag of Words, word2vec, and doc2vec), a 
video-based set of feature, and a mixed set of features (including both the best set of textual 
features and the video-based set of features). As candidate preprocessing pipelines, we con-
sidered the use of SMOTE (Chawla et al. 2002), which allows to generate synthetic instances 
for balancing the training set, and a two-step attribute selection approach: We first rank the 
features based on their respective information gain and we discard the ones with score 0; 
then, we run a wrapper attribute evaluator (Gnanambal et al. 2018) to select the best subset 
of features in terms of AUC achieved by a simple kNN model with k = 3 . More specifically, 
we considered four options: the use of SMOTE alone, the use of our two-step attribute selec-
tion alone, the use of both of them, and the use of none of them. At this stage, we relied on 
the training set, and we performed a tenfold cross validation for all the combinations of ML 
algorithms, feature sets, and preprocessing pipelines for both the problems (binary and multi-
class). For each of them, we compute and report the achieved AUC (Area Under the ROC 
curve (Bradley 1997) (Flach 2016). An AUC of 0.5 indicates a model having the same pre-
diction accuracy of a random classifier. A perfect model ( i.e., zero false positives and zero 
false negatives) has instead AUC = 1.0. Thus, the closer the AUC to 1.0, the higher the model 
performances. In the end, we select the combination that allows achieving the highest score 
both for the binary and the multi-class model.

Finally, as a third step, we ran the best models on the test set to understand to what extent 
the models would be useful in practice. In this case we report not the AUC, but also the preci-
sion, recall, and F-measure scores. Precision is computed as TP

TP+FP
 and recall is computed as 

5 http:// www. cs. waika to. ac. nz/ ml/ weka/
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TP

TP+FN
 , where TP, FP, and FN indicate the number of true positives, false positives, and false 

negatives, respectively. F-measure is computed as the harmonic mean of precision and recall.

5.3  Research Method for  RQ3: Contextual Clustering Effectiveness

To address  RQ3, we tested the two non-parametric clustering techniques described in Sec-
tion 3, i.e., DBSCAN (Ester et al. 1996, OPTICS (Ankerst et al. 1999) with two distance met-
ric, i.e., HSV and SSIM.

Both DBSCAN and OPTICS require to set an � parameter, which indicates the minimum 
distance to be used to consider two instances belonging to the same cluster. However, deter-
mining the input parameter values can be very difficult. For both non-parametric clustering 
techniques, we decide the value of � by using a well-known procedure (Ozkok and Celik 
2017). Specifically, we (i) calculate the distance between each point and its nearest neighbour, 
(ii) sort the distances in ascending order, (iii) compute, for each pair of consecutive distances, 
their difference Δi

= d
i+1 − d

i ), and (iv) set � = max(Δ
i
) . We used this procedure indepen-

dently for each clustering operation we run ( i.e., each combination of video game and similar-
ity metric).

We compare the results of the algorithms with the ground-truth partition produced in the 
manual clustering of the test set to evaluate this step of GELID. To do this, we use the MoJo 
eFfectiveness Measure (MoJoFM) (Wen and Tzerpos 2004), a normalized variant of the MoJo 
distance. MoJoFM is computed using the following formula:

where mno(A,B) is the minimum number of Move or Join operations one needs to perform 
in order to transform a partition A into a different partition B , and max(mno(∀EA

,B) is the 
maximum possible distance of any partition A from any partition B . MoJoFM returns 0 if 
partition A is the farthest partition away from B ; it returns 100 if A is equal to B.

We report the MoJoFM obtained for each combination of game and metric considered.

5.4  Research Method for  RQ4: Specific Issue‑Based Clustering Effectiveness

To answer  RQ4, we tested the same clustering techniques considered in  RQ3 (DBSCAN (Ester 
et al. 1996) and OPTICS (Ankerst et al. 1999) plus a third ( i.e., Mean Shift (Fukunaga and 
Hostetler 1975)) which we could not use in  RQ3 because it can not use custom distance met-
rics. We start from the ground-truth clusters manually defined in the test set. For each of them, 
we run the issue-based clustering approach defined in Section 3 on the instances belonging 
to them. We use the same procedure described in  RQ3 to define the � hyperparameters for 
DBSCAN and OPTICS for each clustering operation. This time, we do not report the � values 
used for space reasons (given the higher number of clustering operations). We report, like for 
RQ 3 , the MoJoFM score achieved for each video game.

5.5  Replication Package

We publicly release in our replication package (Guglielmi et al. 2023) the datasets used 
in each research question, the ARFF files used to train and test the machine learning tech-
niques, the raw data of our manual analyses for each research question, and additional 

MoJoFM(A,B) = 100 − (
mno(A,B)

max(mno(∀EA,B))
× 100)
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data that did not fit in our paper. We also publicly provide the implementation of each 
step of GELID.

6  Empirical Study Results

This section reports the results of the four research questions formulated in Section 4.

6.1  RQ1: Interpretability and Atomicity of Gameplay Video Segments

The IRR between the two raters when they evaluated the interpretability of the segments 
extracted with GELID is k = 0.84 , while it is k = 0.85 when evaluating them in terms of 
atomicity. Thus, in both the cases, the agreement was almost perfect.

When comparing t = 0 with t = 5 in terms of interpretability of gameplay video seg-
ments generated by GELID, we obtain an adjusted p-value < 0.001, with a negligible effect 
size ( � = -0.146). We obtain an analogous result when comparing t = 5 with t = 10 (p < 
0.001, � = -0.092, negligible magnitude). We observed also a difference between t = 0 
witht = 10 : In this case, the adjusted p-value is the same (p < 0.001), while, this time, the 
effect size is small ( � = -0.227). The boxplot in Fig. 3 (left part) visually confirms the dif-
ference we numerically observed.

In terms of atomicity, when comparing t = 0 with t = 5 we obtain an adjusted p-value 
< 0.001, with a large effect size ( � = 0.610). We obtain an analogous result when com-
paring t = 5 with t = 10 (p < 0.001, � = 0.577, large magnitude). As expected, again, the 
difference between t = 0 with t = 10 is large as well (p-value < 0.001, � = 0.869). The 
boxplot in Fig. 3 (right part) visually confirms the difference we numerically observed. A 
case in which two annotators disagreed on the evaluation of the atomicity of a segment is 
related to segment in a gameplay video on Conan Exiles. One author rated the atomicity 
of the segment as 4, while the second author rated it as 5. The disagreement arose from 
the presence of a gameplay setting screen that appeared during the video segment, lasting 
about 3 s. This setting screen interrupted the ongoing game phase and then resumed it. The 
first evaluator considered this interruption significant enough to be considered as a point in 
which two segments could be detected, while the second annotator considered the screen 
appearance time negligible, given its short duration.

Considering overall the results, we can conclude that by increasing the t value we obtain 
negligible advantages in terms of interpretability and substantial disadvantages in terms of 
atomicity. More specifically, while increasing t from 0 to 5 allows to obtain an observable 
difference in terms of interpretability, having a t value higher than 5 practically brings no 
advantage at all (see Fig. 3 — left part). We conclude that t values higher than 5 are most 
likely not worth considering, while there is a trade-off that users might want to consider 
between t = 0 (which allows having substantially more atomic videos) and t = 5 which 
allows having more interpretable videos, even if slightly). Indeed, we obtain for t = 0 an 
average interpretability of 3.97 and an average atomicity of 4.88, while t = 5 provides an 
average value of 4.27 for both interpretability and atomicity.

Answer to RQ1. The proposed segmentation approach achieves satisfactory results. The 
best results are obtained when using t = 0 (privileging atomicity) and t = 5 (privileging 
interpretability).
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6.2  RQ2: Gameplay Video Segments Categorization

ML Pipeline Selection and Training We report in Tables 5 and 6 the results of the tenfold 
cross-validation comparison performed on the training set to select the best algorithm both 
for binary and multi-class categorization, respectively. For deciding which sets of textual 
features we would include in the combination of image-based features and textual features, 
we compared the average results obtained with textual features alone and we picked the 
features that generally allow to achieve the best results ( i.e., Word2Vec).

The machine learning algorithm that provides the best results for binary classification is 
Random Forest, while the best set of features is the combination of image-based and tex-
tual features. Using both SMOTE and attribute selection, we obtained 0.79 AUC (71.8% 
accuracy). The best results could be achieved with Random Forest and a combination of 
image-based and textual features for multi-class categorization as well. This time, how-
ever, the best model was the one trained by only running attribute selection ( i.e., without 
balancing the training set with SMOTE). In this case, the obtained AUC is slightly lower 
(0.75 AUC, 62.0% accuracy), most likely due to the inherently more difficult problem (cat-
egorizing in five classes instead of two).

Testing the Models Tables  7 and 8 report the recall, precision, F-Measure and AUC 
scores achieved by the best model for binary and multi-class categorization, respectively. 
In detail, we report the results achieved both for individual games and for all the instances 
together.

Fig. 3  Distribution of interpretability (left) and atomicity (right) evaluation of gameplay video segments 
with the three different thresholds ( t = 0 , t = 5 , t = 10)

Page 19 of 32    136Empirical Software Engineering (2023) 28:136



1 3

Overall, the binary classification model exhibits slightly worse results compared to 
the ones obtained on the training set with tenfold cross validation (0.61 AUC vs. 0.79). 
The model has an acceptable recall (72%) and a relatively low precision (56%) on the 
informative class. This means that a developer would be able to get most of the poten-
tially interesting segments, but they also have to manually discard many non-informa-
tive ones in the process. The results, however, depend much on the video game at hand: 
For Conan Exiles, for example, the model always achieves acceptable results both in 
terms of overall precision (66%) and recall (64%). This might depend on many factors. 
First, on the quality of the streaming videos taken into account: Streamers might be 
more verbose for some video game genres, thus allowing the classifier to better identify 
the segments. Second, on the similarity with video games included in the training set: 
Some genre- or game-specific terms might be indicative of an issue for some games, 
while not for others. For example, the phrase “loot hack” might appear in online multi-
player role play games and indicate a logic issue, but it might not be pronounced at all 
by streamers playing racing games.

Table 5  RQ2: Comparison, in terms of unweighted average AUC, of different sets of features (Bag of 
Words, Word2Vec, Doc2Vec, Image-based features), preprocessing techniques (SMOTE and Attribute 
Selection), and ML algorithms for binary classification (non-informative/informative)

Model Plain AS SMOTE SMOTE + AS

BoW RandomForest 0.72 0.73 0.72 0.73
Logistic 0.63 0.74 0.62 0.73
SMO 0.68 0.60 0.68 0.66
MultilayerPerceptron 0.52 0.73 0.68 0.73
IBk 0.58 0.73 0.60 0.73

W2V RandomForest 0.72 0.72 0.74 0.71
Logistic 0.68 0.70 0.69 0.70
SMO 0.65 0.65 0.65 0.65
MultilayerPerceptron 0.73 0.68 0.72 0.69
IBk 0.62 0.62 0.62 0.63

D2V RandomForest 0.52 0.50 0.52 0.50
Logistic 0.50 0.50 0.49 0.50
SMO 0.51 0.50 0.48 0.50
MultilayerPerceptron 0.52 0.50 0.56 0.50
IBk 0.50 0.50 0.52 0.50

I RandomForest 0.74 0.69 0.74 0.68
Logistic 0.69 0.66 0.69 0.66
SMO 0.61 0.58 0.58 0.57
MultilayerPerceptron 0.67 0.66 0.69 0.66
IBk 0.62 0.61 0.62 0.60

W2V + I RandomForest 0.78 0.78 0.79 0.79
Logistic 0.70 0.72 0.70 0.72
SMO 0.68 0.65 0.67 0.63
MultilayerPerceptron 0.74 0.73 0.76 0.71
IBk 0.65 0.66 0.64 0.66
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Analogous conclusions can be drawn from the results achieved with the multi-class 
model. In this case, it is interesting to observe that some classes the classifier never catego-
rizes instances as performance and balance (“–” for precision in Table 8). This is possibly 
due to the fact that such issue types are generally less prevalent than others6 and, thus, the 
model fails to learn how to recognize them. It is also worth noting that we were not able to 
find balance issues in one of the games taken into account ( i.e., DayZ). Overall, the model 
achieves better results on the presentation class. This is probably due to the fact that, for 
this category, the model also relies on image-based features, which are less relevant for the 
other classes (Table 9).

Answer to  RQ2. The categorization models defined are not able achieve satisfactory 
results both for binary and multi-class categorization.

Table 6  RQ2: Comparison, in terms of unweighted average AUC, of different sets of features (Bag of 
Words, Word2Vec, Doc2Vec, Image-based features), preprocessing techniques (SMOTE and Attribute 
Selection), and ML algorithms for multi-class classification (logic, presentation, performance, balance, 
non-informative)

Model Plain AS SMOTE SMOTE + AS

BoW RandomForest 0.72 0.70 0.71 0.69
Logistic 0.70 0.69 0.70 0.70
SMO 0.67 0.62 0.67 0.69
MultilayerPerceptron 0.70 0.71 0.70 0.70
IBk 0.60 0.69 0.60 0.69

W2V RandomForest 0.73 0.72 0.70 0.71
Logistic 0.59 0.71 0.63 0.69
SMO 0.67 0.60 0.70 0.67
MultilayerPerceptron 0.67 0.64 0.68 0.65
IBk 0.58 0.59 0.61 0.60

D2V RandomForest 0.52 0.49 0.51 0.49
Logistic 0.48 0.49 0.48 0.49
SMO 0.49 0.50 0.49 0.49
MultilayerPerceptron 0.52 0.49 0.50 0.49
IBk 0.49 0.49 0.51 0.49

I RandomForest 0.69 0.62 0.67 0.62
Logistic 0.66 0.64 0.65 0.64
SMO 0.54 0.53 0.62 0.61
MultilayerPerceptron 0.52 0.66 0.63 0.64
IBk 0.56 0.58 0.56 0.56

W2V + I RandomForest 0.74 0.75 0.74 0.71
Logistic 0.61 0.71 0.65 0.70
SMO 0.70 0.57 0.71 0.68
MultilayerPerceptron 0.71 0.67 0.71 0.66
IBk 0.60 0.59 0.62 0.58

6 33 and 48 in the training set, 31 and 4 in the test set for performance and balance, respectively.
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6.3  RQ3: Clustering Gameplay Video Segments by Context

Table 10 shows the MoJoFM score achieved by the two tested algorithms when compar-
ing their output with the manually defined clusters. First, it can be observed that OPTICS 
allows to achieve the best results for all games taken into account, between 46.0% (New 
World) and 21.9% (Conan Exiles). It is worth noting that the variability among video 
games is, in this case, quite high. This is expected: Some games have areas and levels very 
similar one to another, thus making the task of visually distinguishing the areas quite chal-
lenging even for a human who never played the game. For example, the frames presented 
in Fig. 4 represent two visually similar areas in Conan Exiles that, however, are different.

Overall, however, we can conclude that the clustering approach we defined in GELID is 
only partially able to achieve its goal.

Answer to RQ3. We obtained mixed results for the clustering by context step because its 
performance strongly depends on the video game at hand.

6.4  RQ4: Clustering Gameplay Video Segments by Specific Issues

Table 11 shows the MoJoFM score achieved by the three tested algorithms when compar-
ing their output with the manually defined clusters. In this case, the results are definitely 
better than the ones obtained in the previous experiment, with the best-performing algo-
rithm (DBSCAN) achieving 72.7% MoJoFM score. This is due to the fact that, in this case, 
there were less instances to cluster for two of the games taken into account (DayZ and New 
World). As a result, the task was inherently easier. It is worth noting, however, that for 
Conan Exiles the number of instances to cluster was quite large, in some cases, up to 18 
and DBSCAN still achieves very good results (71.2% MoJoFM).

Differently from what observed for  RQ3, we have a much less marked variance among 
the games (between 69.1% and 77.8%). OPTICS, in this case, achieved slightly worse 
results than DBSCAN, while MeanShift is clearly less effective than the others.

Answer to RQ4. DBSCAN allows to cluster the segments very similarly to how human 
annotators clustered them, with a low variability among video games.

Table 7  RQ2: Performance of the best binary categorization model on the test set. We use the icon  to 
indicate the informative class and the icon  to indicate the non-informative class, while  indicates their 
weighted mean

Game Precision Recall F-Measure AUC 

Conan Exiles 61% 70% 66% 77% 52% 64% 68% 60% 64% 0.73 0.73 0.73
DayZ 52% 54% 53% 71% 34% 53% 60% 42% 51% 0.55 0.55 0.55
New World 65% 47% 58% 71% 40% 59% 68% 43% 59% 0.61 0.61 0.61
Overall 56% 62% 60% 72% 45% 58% 63% 52% 58% 0.58 0.64 0.61
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7  Discussion

The main problems we encountered are in the automated categorization of issues in game-
play video segments and in the context-based segment clustering (steps 2 and 3 of GELID).

First, it is worth noting that our results partially contrast the ones obtained by Lin et al. 
(2019), who defined a classifier able to correctly distinguish informative from non-inform-
ative gameplay videos. Segment-level categorization is a much harder problem than video-
level categorization. This is confirmed by the fact that even simplifying our five-class cate-
gorization problem in binary categorization problem (similarly to the one addressed by Lin 
et al. (2019), but on segments), we still obtain negative results (58% F-Measure, with 0.61 
AUC). We have some hypothesis on why this is the case. First, videos have metadata (such 
as tags, descriptions, and so on) that segments lack. Lin et al. (2019) used such metadata, 
but we could not use them in our context. If a video is specifically aimed at reporting issues 
( i.e., it contains a compilation of game errors), it is very likely that the authors explicitly 
mention this in the description. Gameplay video subtitles, instead, are much more noisy.

We observed that, often, the subtitle sentences are incomplete and ambiguous ( e.g., 
“logics, bro. Well, I talk all” used for a logic problem, “they are lower than that” used for 
a presentation problem, and “less well-known logic that’s arguably one” used for a perfor-
mance problem). To some extent, this happens because the comment corresponding to the 
portion of the video in which the issue appears might not be in sync with the issue itself: 
Gamers might talk about the issues even several minutes after it appears. It is worth noting 
that this problem is not related to the automated segmentation, because in evaluating step 2 
with RQ 2 we used manually-defined segments. The problem is in the lack of (logical) sync 
between what streamers say and when what they say happens on screen. Future work could 

Table 8  RQ2: Performance of the best multi-class categorization model on the test set. We use the icons  
, , , , and  to indicate the logic, presentation, performance, balance, and non-informative 

classes, respectively, while  indicates their weighted mean

Game Precision Recall

Conan Exiles 58% 48% 25% - - 48% 81% 39% 3% 0% 0% 55%
DayZ 51% 35% 0% - - 39% 61% 34% 0% - 0% 43%
New World 56% 49% 25% - - 48% 71% 40% 50% 0% 0% 52%
Overall 56% 44% 13% - - 45% 73% 38% 10% 0% 0% 51%
Game F-Measure AUC 

Conan Exiles 68% 43% 5% - - 49% 0.69 0.65 0.58 0.33 0.57 65%
DayZ 55% 35% 0% - - 43% 0.52 0.52 0.53 - 0.47 51%
New World 63% 44% 33% - - 49% 0.64 0.60 0.93 0.72 0.10 62%
Overall 63% 40% 10% - - 47% 0.63 0.60 0.54 0.61 0.48 60%

Table 9  RQ3: MoJoFM achived 
for clustering by context with 
HSV

DBSCAN OPTICS

Conan Exiles 17.8% 21.9%
DayZ 23.2% 36.6%
New World 28.0% 46.0%
Average 23.0% 34.8%
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consider a larger context for extracting the features ( e.g., the surrounding n seconds, with 
even large values of n ) instead of only considering the subtitles related to the specific seg-
ment. The idea based on the possibility of using a larger context stems from the assumption 
that expanding the context of observation allows for a broader view of what is happening 
in the specific gameplay video, thus in the game, and allows more features to be extracted.

Lesson Learned 1. Considering a larger context for extracting textual features might allow obtaining better 
results

Future Research Idea 1. To overcome this limitation, future research could aim to consider a larger por-
tion of video both before and after the given identified segment

Using keywords to detect possibly useful segments of the gemeplay videos might be 
detrimental. Indeed, there may be segments without streamer comments, that would be 
completely ignored. These are blind spots for GELID. To address this limitation, it may be 
necessary to develop new and specialized approaches to detect specific problems, such as 
glitches or stuttering events.

Related to this, another problem we noticed by analyzing some examples is that stream-
ers sometimes comment on their gaming experience in an irregular manner, often even 
through simple exclamations ( e.g., “the glitch myself?” for performance, “BAM!” for logic, 
“and there!” for presentation). Catching those issues is probably infeasible by only rely-
ing on textual information. Similarly, we can observe a performance problem found in a 
gameplay video of New World7: The game temporarily freezes while the player is running, 
but they say “here can see one right now okay stop doing that let’s start running they’re 
nasty big aren’t they”, referring to what is happening in the game. Automatically categoriz-
ing this kind of issue is, again, extremely challenging, and a more specific approach would 
be needed. Another limitation of GELID is related to the fact that it only relies on game-
play videos in English. Future work is needed to generalize it to other languages. In CLAP 

Table 10  RQ3: MoJoFM achived 
for clustering by context with 
SSIM

DBSCAN OPTICS

Conan Exiles 4.8% 21.9%
DayZ 0.0% 2.5%
New World 0.0% 18.5%
Average 1.6% 14.3%

Fig. 4  Different game scenes in Conan Exiles grouped in the same context cluster

7 https:// youtu. be/ 1duiz y5DSOg? t= 1540
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(Scalabrino et al. 2017), an attempt has been made to deal with this issue. The authors tried 
to translate the input textual information (in the context of GELID, subtitles) from foreign 
languages into English and then use the normal approach (which works on English) to deal 
with them. However, this solution proved to be unsuccessful. In this paper, we use word-
2vec: It would be possible to test the effectiveness of word2vec models trained on other lan-
guages. Based on the negative results obtained for English, which is quite widespread, we 
believe that the implementation of such an approach cannot be successful at present.

Lesson Learned 2. Sometimes, textual features are not useful at all since the streamers use generic excla-
mations to report issues

Future Research Idea 2. Future research could aim at taking into account the slang used by streamers and 
to define a vocabulary of the terms most commonly used to describe different kinds of issues or to define 
specialized approaches to detect issues mostly based on the videos rather than on the captioned spoken 
content

When looking at the multi-class categorization, the problem is even more evident in 
terms of general effectiveness of the model. We report in Table 12 the confusion matrix 
for the multi-class categorization model. While the model correctly identifies 81 presen-
tation issues, it correctly detects only 2 logic-related issues and, again, no performance- 
and balance-related issue. More interestingly, the model often categorizes presentation-
related issues as logic issues, while the opposite happens relatively less frequently. In 
general, instead, the model tends to confuse the specific categories of instances as pres-
entation-related, probably because it is the most frequent informative type of issue.

We analyzed some misclassified instances, aiming at getting some insights on why the 
model tends to confuse some presentation issues for logic issues and why it is not able to 
correctly identify performance and balance instances. We found an interesting example in 
DayZ. The streamer says “my doesn’t seem to be archived it back back is so annoying”,8 but 

Table 11  RQ4: MoJoFM achived 
for clustering on the specific-
issue

DBSCAN OPTICS MeanShift

Conan Exiles 71.2% 62.5% 52.9%
DayZ 69.1% 69.1% 58.2%
New World 77.8% 77.8% 55.6%
Average 72.7% 69.8% 55.5%

Table 12  RQ2: Confusion Matrix for multi-class categorization on all the instances (Conan Exiles, DayZ, 
and New World). The columns indicate the categories assigned by the classifier, while the rows indicate 
actual ones

218 75 5 0 0

126 81 8 0 0

27 16 2 0 0

18 13 0 0 0

3 1 0 0 0

8 https:// youtu. be/ eDQId qDC- sc?t= 239
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the model probably confuses the indication of an “annoying” circumstance for something 
related to a functional issue (logic), while, in this case, it was referred to a presentation issue.

Lesson Learned 3. Given the strong class unbalance, categorization does not work well for detecting 
performance and balance problems. Approaches specifically designed for finding such categories of issues 
might be needed

Future Research Idea 3. To increase the number of balance and performance instances, it could be use-
ful to look for and specifically take into account video games that are or have been notorious for such 
problems

Another possible reason behind the failure in categorization could be related to the pro-
cedure used to define the training set: To collect an adequate number of instances, we con-
sidered videos that explicitly report issues ( i.e., that contain keywords such as “bug” in their 
title or description). It is possible that these videos are intrinsically different from the long 
gameplay videos we used for testing the models. To check if this is the case, we trained/tested 
two classifiers (both for binary and multi-class categorization) based on the best configura-
tions found in RQ 2 by using tenfold cross validation on the test set alone, both globally and 
by considering the instances of single games. We report the results in Table 13. We observed 
a clear increase in the effectiveness of both the models, with the binary classification model 
achieving ∼ 82% accuracy on two games. While more data would be necessary, the results of 
this analysis suggest that videos explicitly reporting issues are too different from long game-
play videos (that we aim to target) in which issues sometimes appear. Thus, it would be more 
appropriate to build the training set using the same procedure used to build the test set, even 
if this require a much bigger effort (it would not be possible, for example, to use the approach 
by Lin et al. (2019) as a filter). Also, using a training set composed of only game-specific 
instances might allow to achieve better results (even if we observed this only for two games 
out of three). In detail, again, a training set defined on a specific game allows for more precise 
information in relation to the game area/level. For example, open world games have very 
similar game areas, so a large amount of data would allow a more precise distinction to be 
made between the different game areas in which users find themselves.

Lesson Learned 4. A training set built on long gameplay videos not specifically aimed at reporting issues 
might help achieving better results. Also, gamespecific training might help increasing the model accuracy

Future Research Idea 4. Future research should verify what is the impact of the type of video, i.e., long 
and generic gameplay videos or short and focused gameplay videos reporting issues, on the performance 
of the four steps of GELID

As for the context-based segment categorization (step 3 of GELID), as we previously 
mentioned while analyzing the results, the poor performance can be due to the fact that some 
games have visually similar, but logically different game areas/levels. Some video games 

Table 13  Accuracy and AUC 
achieved by training/testing 
the best models for binary and 
multi-class categorization on the 
test set alone using tenfold cross 
validation

Game Binary Multi-class

Accuracy AUC Accuracy AUC 

Conan Exiles 81.7% 0.89 71.7% 0.73
DayZ 64.7% 0.75 59.0% 0.56
New World 81.7% 0.89 67.9% 0.72
Combined 72.7% 0.79 59.9% 0.63
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might suffer from this issue more than others. In our case, we observed that our approach 
(specifically, the variant based on HSV histogram correlation, which achieves the best results) 
works reasonably well on New World, but remarkably bad on Conan Exiles. For the video 
games on which our approach does not work well, a more sophisticated (and game-specific) 
approach might be used, which should be specialized on the game at hand so that, for exam-
ple, it is able to distinguish the specific game areas by recognizing specific game elements.

Lesson Learned 5. A game-specific approach for recognizing the game area/level might be needed for 
some video games

Future Research Idea 5. Researchers should test the impact of introducing game- or game-genre-specific 
features on the effectiveness of the context-based clustering

8  Threats to Validity

Threats to construct validity mainly pertain the possible imprecisions made while defining 
the test set used to evaluate GELID and to answer all our research questions. As explained 
in Section 4, to reduce this threat, two evaluators independently tagged each instance and 
discussed conflicts aiming at reaching consensus. This occurred in 1.2% of the cases.

Threats to internal validity concern factors internal to our study that could have 
affected the results. A first threat regarding RQ 2 is related to the specific set of ML tech-
niques we decided to use and to the preprocessing pipelines we tested. As for the first, we 
took into account the main categories of classic ML approaches. It is possible that Deep 
Learning-based approach achieve better results, but we avoided using such approaches 
because even a small Neural Network (Multilayer Perceptron) achieves very poor results 
given the small size of our training set. Another limitation related to RQ 2 is the choice not 
to tune the hyperparameters and to use the predefined hyperparameters provided by Weka. 
To understand the impact of this decision, we tried to replicate the results of binary clas-
sification of segments as informative and non-informative while varying the main hyperpa-
rameter for Random Forest ( i.e., the maximum number of features). We report in Table 14 
the results of such an analysis on the Conan Exiles dataset.9 Although this analysis revealed 
some improvements in model performance while varying such a parameter, we found that 
the impact of not tuning it was rather small (+ 4 percentage points for F-Measure and + 0.01 
for AUC). Thus, we believe this is not the cause of the negative results we obtained.

The classes we consider for the multi-class categorization problem ( RQ 2 might be 
incomplete: It is possible that we do not consider some relevant categories of issues. To 
mitigate this threat, we avoided defining such categories based on our personal experience, 
but we relied on a state-of-the-art taxonomy Truelove et al. (2021). A key threat regards the 
features considered for step 2 (and, thus, to answer  RQ2). It is worth noting that we relied 
on features that proved to be useful in other contexts ( e.g., categorization and clustering of 
mobile app reviews Chen et al. (2014); Scalabrino et al. (2017)), and we also augmented 
them with video-based features. Still, it is possible that a different set of features leads to 
better results. As for clustering (both  RQ3 and  RQ4), it is possible that we chose sub-opti-
mal parameters ( i.e., � values). To reduce this threat, we used a rigorous procedure Ozkok 
and Celik (2017) to set these values for each tested video game.

9 Note that the results differ from the ones reported in Table 6 because we did not run any preprocessing 
step here.
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Finally, threats to external validity concern the generalizability of our findings. Our test 
set is composed of gameplay videos related to only 3 video games. We could not select vid-
eos from a more diverse set of video games because we needed multiple segments related 
to the same game areas to address RQ 3 and RQ 4 . However, it is worth noting that we also 
report in Tables 5 and 6 the results of a tenfold cross validation performed on the training 
set, which, differently from the test set, is composed of videos from many video games 110, 
specifically. Nevertheless, we acknowledge that most of our results are not necessarily gener-
alizable to the vast quantity of video game genres and video games available in the market.

We believe that the variety of video games is not as relevant as the variety and type of stream-
ers involved. GELID heavily relies on (captioned) spoken content for segmentation and categori-
zation. To this end, having verbose streamers could benefit GELID. On the other hand, the video 
game selection might mostly impact the two clustering-related steps: For example, games with 
many graphically similar levels or areas might deceive GELID while it cluster segments.

9  Conclusion

In recent years, there has been a growing interest in video games. During game develop-
ment, many bugs go undetected prior to release because of the difficulty of fully testing all 
aspects of a video game. We introduce GELID, a novel approach for detecting anomalies 
in video games from gameplay videos to support developers by providing them with useful 
information on how to improve their games. We validated the single steps of GELID in an 
empirical study involving 604 segments extracted from 80 h of gameplay videos related 
to 3 video games (Conan Exiles, DayZ, and New World). We obtained mixed results: The 
effectiveness of both segmentation (step 1) and issue-based clustering (step 4) are satisfac-
tory, while we observed that categorization (step 2) and context-based clustering (step 3) of 
segments still do not work sufficiently well to be used in practice. Future work should aim 
at addressing these two problems. To foster research in this field, we publicly release all the 
(manually annotated) datasets in our replication package Guglielmi et al. (2023).

Table 14  RQ2: Hyperparameter Tuning of the Random Forest categorization model on Conan Exiles. We 
use the icon  to indicate the informative class and the icon  to indicate the non-informative class, while 

 indicates their weighted mean

Num 
Features

Precision Recall F-Measure AUC 

Unlimited 
(default)

55% 72% 63% 88% 29% 59% 68% 42% 55% 0.68 0.68 0.68

1  55% 65% 60% 80% 37% 58% 65% 47% 56% 0.61 0.61 0.61
2  56% 74% 65% 87% 34% 60% 68% 47% 58% 0.63 0.63 0.63
3  57% 80% 69% 92% 32% 62% 70% 45% 57% 0.66 0.66 0.66
4  54% 66% 60% 85% 27% 56% 66% 39% 52% 0.62 0.62 0.62
5  56% 79% 68% 92% 31% 61% 70% 45% 57% 0.65 0.65 0.65
6  55% 80% 68% 93% 26% 59% 70% 39% 54% 0.69 0.69 0.69
7  56% 77% 69% 70% 45% 57% 69% 45% 57% 0.67 0.67 0.67
8  65% 47% 58% 56% 79% 68% 92% 31% 61% 0.69 0.69 0.69
9  55% 72% 63% 88% 30% 59% 68% 42% 55% 0.69 0.69 0.69
10  57% 84% 70% 93% 32% 63% 71% 47% 59% 0.68 0.68 0.68
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