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Abstract—Knowing which parts of the source code will be
defective can allow practitioners to better allocate testing resources.
For this reason, many approaches have been proposed to achieve
this goal. Most state-of-the-art predictive models rely on product
and process metrics, i.e., they predict the defectiveness of a
component by considering what developers did. However, there is
still limited evidence of the benefits that can be achieved in this
context by monitoring how developers complete a development
task. In this paper, we present an empirical study in which we aim
at understanding whether measuring human aspects on developers
while they write code can help predict the introduction of defects.
First, we introduce a new developer-based model which relies
on behavioral, psychophysical, and control factors that can be
measured during the execution of development tasks. Then, we
run a controlled experiment involving 20 software developers
to understand if our developer-based model is able to predict
the introduction of bugs. Our results show that a developer-
based model is able to achieve a similar accuracy compared to
a state-of-the-art code-based model, i.e., a model that uses only
features measured from the source code. We also observed that
by combining the models it is possible to obtain the best results
(∼84% accuracy).

Index Terms—bug prediction, human aspects of software
engineering, biometric sensors, empirical software engineering

I. INTRODUCTION

Quality assurance is of paramount importance in software
development. While activities such as code reviewing or testing
allow developers to increase the quality of software products,
bugs are still inevitable. Predicting which components will
likely be affected by bugs in the near future would allow
practitioners to dedicate attention to such components, thus (i)
reducing the costs of failure consequences and defect fixing, as
well as (ii) improving the overall software quality. To this aim,
many automated techniques have been proposed to predict the
presence of defects in the source code [1]–[7].

The currently available defect prediction techniques are
mainly based on machine learning [8]–[10]. A binary classifier
is trained on past data to automatically predict if new software
components will contain bugs. These approaches leverage fea-
tures classically derived from product metrics, which measure
characteristics of the source code (e.g., LOC) [11], and process
metrics, which capture aspects related to the development
activities (e.g., number of changes, or number of developers
who applied changes) [6]. While such factors are important, the
aforementioned approaches fail to capture the human aspects
relevant when developers introduce bugs.

Therefore, some studies have tried to shift the focus on the
developer’s side [2], [5], [7] by proposing novel metrics able to
capture the human factors behind writing and maintaining code.
However, such metrics are mostly computed by mining software
repositories, and they only focus on what the developers did,
rather than on how they did it. The latter aspect, neglected in
previous work, is of utmost importance: for example, previous
work showed that developers who experience fatigue may be
more likely to introduce bugs [12].

In this paper, we present an empirical study in which we
aim at understanding to what extent human aspects that can
be monitored and measured while programming can help
predict the introduction of defects in the source code. To
achieve this goal, we first build a conceptual framework
including behavioral, psychophysical, and control factors,
which we conjecture could help to determine the outcome
of a development task in terms of presence of errors (i.e.,
bugs). We operationalize these factors through a set of metrics
that can be concretely assessed during software development
using behavioral measurements (e.g., the counts of keystrokes
and mouse clicks), biometrics (e.g., the developers’ heart-rate
or attention level) or by acquiring contextual information (e.g.,
the developers’ programming experience).

We ran a controlled experiment involving 20 software devel-
opers who were monitored while performing coding tasks of
different difficulty levels and, specifically, two implementation
tasks and two bug-fixing tasks. We used the collected data to
compare the predictive power of two machine learning models:
one based on our framework (developer-based) and one based
on state-of-the-art product metrics (code-based).

Our results show that a developer-based model, alone, does
not outperform the code-based baseline, achieving an accuracy
of 76% (vs 79% obtained by the baseline). However, we observe
that a model that combines developer- and code-based features
achieves the best results (84% accuracy). Some behavioral and
psychophysical features, such as the ones based on keystrokes
and heart-rate, resulted to be important predictors. Therefore,
we envision that the definition of training sessions aimed at
improving the underlying cognitive processes related to such
factors might help developers increase the quality of their code.
Also, it would be possible and beneficial, in the future, to train
developers to become self-aware of the conditions in which
it is better for them to take breaks or completely stop writing
code to reduce the risk of introducing errors.



To summarize, we make the following contributions:
• We define the first bug prediction model based on a

comprehensive set of developer-based factors acquired
while a task is being performed;

• We present the results of a controlled experiment based
on a rigorous protocol to assess how a model relying on
developer-based features compares with one depending
on code-based features;

• We release the replication package of this study including
the study protocol and the scripts, to foster future studies
in this field.

The remainder of this paper is organized as follows: Sec-
tion II reports the related work on bug prediction and biometrics
in software engineering; Section III describes our conceptual
framework and its operationalization; then, we describe the
study design and protocol in Section IV, present the empirical
results in Section V, and discuss their implications. Finally,
we report the threats to validity and discuss the ethical issues
in Section VI, and conclude the paper in Section VII.

II. RELATED WORK

A. Bug Prediction

The scientific community has devoted much effort to inves-
tigating the problem of automatic bug prediction. D’Ambros
et al. [13] conducted a large comparison of bug prediction
methods that rely on the usage of products and process
metrics. The results showed that there is not a technique
that globally performs better than the others. Along this line,
Palomba et al. [8] designed a bug prediction model for smelly
classes based on machine learning. Specifically, they proposed
combining predictors based on product and process metrics
with a measure of code smell intensity. The findings revealed
that this combination of information increased the accuracy
of the bug prediction model, with a +13 % gain in F1-score,
compared to the state-of-the-art.

Pandey et al. [10] performed a large machine-learning study
aimed at designing and evaluating a bug-prediction model
capable of dealing with the class imbalance problem. Indeed,
the class imbalance is a major problem for research studies
in this field. Pandy and colleagues proposed a classification
framework composed of a sequence of deep-learning and two
ensemble learning layers. Specifically, these latters were the
layers in charge of dealing with the class imbalance problem in
software bug prediction. This mixed model allowed to achieve
better results than most state-of-the-art approaches.

Recently, Qu et al. [14] presented a study where they
investigated the relationship between the number of software de-
velopers and the probability that a file contains buggy code. To
this aim, they included nine open-source systems and observed
that when multiple developers worked on the same source
code file there is a higher chance that the file contains buggy
code. Considering this trend, they designed an unsupervised
method in the context of effort-aware bug prediction. The
results showed prediction performance comparable or better to
other supervised baseline approaches).

Ferenc et al. [15] released a novel dataset, namely the
BugHunter Dataset, which was built according to a different
perspective: the data indeed was acquired by considering
the buggy and the fixed states of the same source code
components in terms of time frames and therefore not in
terms of the typical release versions. The authors designed
a bug prediction experimentation on this dataset with bug
characterization metrics at three source code levels: file, class,
and method. This study revealed that method-level metrics
show the highest performances in the classification. Indeed,
the best model achieved an F-measure value over 0,74.

To the best of our knowledge, this is the first work that aims
at predicting the presence of bugs in source code by including
consideration of biometric features.

B. Biometrics in Software Engineering

In recent years, the software engineering research com-
munity started to use physiological signals to investigate
the relationship between developers’ cognitive and affective
states and several aspects of software development, such as
code comprehension [16], productivity [17], and software
quality [18]. Such studies include consideration of several
biometrics, including hearth-related metrics, the measurement
of electrodermal activity (EDA), electroencephalography (EEG),
electromyography (EMG), or eye-tracking.

Code comprehension and task difficulty Fritz and col-
leagues [19] combined features based on eye-tracking, EDA
and EEG, to predict the difficulty of a task as perceived
by developers during and after a programming task. Their
study demonstrates that it is possible to predict whether a new
developer will experience difficulties in a code comprehension
task with a precision of 70% and a recall 62%. Parnin [20]
studied the complexity of programming tasks by relying on
the analysis of sub-vocal signals. The study shows how EMG
correlates with cognitive patterns involved in dealing with
easy and hard programming tasks. Fucci et al. [21] employ
lightweight biometric sensors for EEG, EDA, and heart-related
measurements to distinguish between code and natural language
comprehension tasks, reporting a 90% accuracy.

Emotions and perceived productivity Recent research also
investigated the relationship between physiological measures
and developers’ productivity. Radevski et al. [17] proposed a
framework for continuous monitoring of developers’ perceived
productivity based on brain electrical activities. Müller and
Fritz [18] used a combination of different biometric measure-
ments to predict self-assessed progress and interruptibility
of developers while programming. They also demonstrated
that it is possible to recognize developers’ emotions using a
combination of EEG-, eye-, and heart-related metrics with an
accuracy of 71%. The progress experienced by developers was
predicted at a similar rate, but using a different set of biometrics
(i.e., EDA signal, skin temperature, brainwave frequency, and
pupil size). The findings of the study by Müller and Fritz [18]
have been confirmed and extended by a recent replication
performed by Girardi et al. [22].



They investigated the range and triggers of emotions that
software developers experience while programming and ob-
served a positive correlation between emotional valence —
i.e. the (un)pleasantness of the emotion stimuli — and the
self-reported progress, in line with previous studies [18], [23].
Furthermore, they demonstrate how emotion recognition is
feasible using a minimal set of biometric sensors for EDA
and heart-related metrics. Their machine-learning classifier can
detect valence and arousal — i.e. the emotional activation,
ranging from excited to relaxed — with an accuracy of 71%
and 68%, respectively. Girardi et al. [24] performed further
investigation on the use of biometrics for emotion recognition
at the workplace. In their field study, they experiment with a
minimal set of non-invasive biometric sensors including EDA
and hearth-related metrics as collected by the Empatica E4
wristband during the daily working activities of professional
developers from five different companies. While promising,
the performance of their models is not yet robust enough for
practical usage, thus calling for further data collection and
individual fine-tuning of emotion models.

Identification of code quality concerns Müller and Fritz [25]
also investigated the use of EDA, EEG, and heart-related
biometrics for real-time identification of code quality concerns,
i.e., low-quality code containing bugs. The authors provide
evidence that biometrics can outperform traditional code-related
metrics to identify quality issues in a codebase. Differently
from their work, in this paper (i) we define a framework that
aims at generalizing the aspects beyond biometrics by also
including behavioral aspects; (ii) we focus on bugs, while they
focus on code quality concerns (which are more generic); (iii)
we run a controlled experiment, while they conducted a field
study.

III. CONCEPTUAL FRAMEWORK

We develop a conceptual framework for the analysis of
factors influencing the probability of introducing a bug. The
framework is built upon the evidence provided by relevant
literature through an informal literature review. Starting from
a seed set of papers in the field we were aware of, we
snowballed and identified other relevant papers based on which
we determined a set of factors. Then, we operationalize each
factor by introducing a set of metrics that we use as candidate
predictors for our machine learning study.

A. Modeling the Factors

Building upon the evidence provided by relevant literature,
we develop a conceptual framework for the analysis of factors
influencing the probability of introducing a bug. Figure 1
depicts the framework and summarizes the metrics which we
used to operationalize them, as explained in Section III-B. We
identify three families of factors: behavioral factors, describing
what the developers do during the task, psychophysical factors,
describing the physical, cognitive and emotional condition of
developers during the task, and control factors, describing
incidental characteristics, including the context in which
developers perform the task and their experience.
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Fig. 1: Conceptual framework of developer-related factors
influencing the introduction of bugs.

1) Behavioral Factors: We conjecture that what developers
do during a task can provide some important hints that could
allow predicting the possible introduction of a bug while
completing a development task. Developers perform several
activities while they write code: they type, they browse the
web, they possibly get distracted by notifications. To capture
such pieces of information, we focus on the developers’ activity
and on their actions.

We capture the high-level activity that the developer is
performing (browsing the web, writing code, or something
else). For example, if a developer uses the browser more than
the IDE, it might be the case that he/she is experiencing some
problem in understanding the problem at hand or how to use
a specific technology.

The low-level actions performed by the developer while
completing a task may be indicative of their cognitive effort.
Basic actions of developers include typing, moving the pointer,
and scrolling. The typing behavior may provide important clues:
For example, typing incessantly may indicate that the developer
is not spending enough time checking the code or at thinking
at the solution, as it has been observed in previous work [26].
While moving the mouse and scrolling do not result in the
production of source code, they may provide interesting pieces
of information as well: for example, frequent scrolling may
indicate lack of visual attention, which, in turn, might be a
symptom of a lack of focus [27].

2) Psychophysical Factors: Constraints on time, quality,
and cost can introduce time pressure and stress, and reduce the
emotional well-being at work [28]–[31]. Physiological aspects
could help in detecting the state in which the programmer is,
which may impair the completion of a task. The psychophysical
state may both depend on the task and external factors (e.g.,
developer’s private life or work conditions): developers may
feel frustrated if they cannot understand a specific piece of
code or they may be stressed because an important deadline is
approaching. Such kinds of conditions may have an impact on
the performance. We identified three psychophysical factors:
stress, affective states, and concentration.



Stress can be broadly defined as an actual or anticipated
disruption of homeostasis or an anticipated threat to well-
being [32]. In 1993, the authors of one of the first works in
the literature on stress in Software Engineering [33] propose a
new perspective on how this factor may affect the behavioral
dynamics in the information system development. They state
that stress - with high probabilities - is one of the main corrosive
factors for a software developer. Stressor-related information
from all major sensory systems is conveyed to the brain,
which recruits neural and neuroendocrine systems (effectors)
to minimize the net cost. The physiological response to stress
involves an efficient and highly conserved set of interlocking
systems and aims to maintain physiologic integrity even in the
most demanding of circumstances. The autonomic nervous
system provides the most immediate response to stressor
exposure — through its sympathetic and parasympathetic arms,
which provoke rapid alterations in physiological states through
neural innervation of end organs. Stress can be detected from
biomedical low-invasive sensors. Among others, heart-related
measures [34], [35] or their temporal trend [36] were leveraged.
It is generally accepted that the activities of the Autonomic
Nervous System, which consists of the Sympathetic (SNS)
and Parasympathetic nervous systems (PNS), are reflected in
the low-frequency (LF) and high-frequency (HF) bands in
heart rate variability (HRV) [35]. Some studies support the
use of several different physiological factors: Vinkers et al.
[37] use the body temperature to detect stress, while Suess et
al. [38] observed that an anomalous respiratory activity (e.g.,
hyperventilation) may indicate stress as well. Finally, changes
in the electrodermal activity due to sweating is also leveraged
for the stress assessment [39].

Affective states refer to the emotional response triggered
by an internal (e.g. feeling of failure) or external event (e.g.
peers ask for help). In line with previous work on emotions in
software development, we model emotions along continuous
dimensions [22], [24], [40], [41]. In particular, we adopt the
Russell’s Circumplex model [42], which describes emotions in
terms of valence (pleasantness of the stimuli) and arousal (level
of activation) dimensions. Recent work shows how unpleasant
emotions correlates to developers’ unhappiness, causing the
production of software with lower quality than expected [40].
High arousal, instead, could be a symptom of time pressure
and might negatively impacts the quality and the efficiency of
the development activities [43]. Conversely, happy software
developers achieve better performance [44]. The link between
positive emotions and self-assessed productivity was further
confirmed by recent lab [18], [45] and field [24] studies.

Concentration concerns the ability to think carefully about
something the developers are doing and nothing else. Motivated
by the fact that navigating through code and searching for
relevant information requires a lot of developer time, Ahrens
et al. [46] use eye tracking to record and transfer developers’
attention during software maintenance. The output is offered
to the developers in form of a heat map of attention levels.
Results showed that this attention representation helped some
of the participants for orientation and code finding purposes.

However, the majority rated them as barely helpful or
even not helpful thus calling for future research in this
direction. Focus is also related to concentration, and it has been
recently studied by Soto et al. [47]. The authors performed
an experiment involving 14 professional knowledge workers
in their workplace over an eight-week with a large variety of
biometric measurements (e.g., Heart Rate, Skin Temperature,
Respiration Rate). The results showed that the focus can be
predicted with an overall accuracy equal to 67%. The concept
of staying focused was also reported in recent work by Pilzer
et al. [48]. The authors conducted a formative study with 18
professionals in which they examined their computer-based and
eye-gaze interaction with the window environment and devised
a relevant model of open windows. The results showed that
the devised model was able to predict the relevance of open
windows with an accuracy of 72.7%. Finally, interruptibility
also relates to concentration. According to Zuger et al. [49],
knowing a person’s interruptibility allows optimizing the
timing of interruptions and minimizing disruption. The authors
conducted a two-week field study with 13 professional software
developers to investigate a variety of computer interactions
such as heart-, sleep-, and physical activity-related data. Their
analysis showed that computer interaction data is more accurate
in predicting interruptibility at the computer than biometric
data (74.8% vs. 68.3% accuracy), and that combining both
yields the best results (75.7% accuracy).

3) Control Factors: The performance of a developer may
depend on aspects which are not directly of interest to the
study’s aims, but that could still influence the outcomes.
Specifically, we focus on two factors that previous work showed
some correlation with the probability of introducing bugs [50]:

Developers’ experience. All else being equal, novice devel-
opers may introduce bugs more often than expert developers
[50], [51]. This could not always be true because there are many
factors that may contribute to the production of source code.
What is often the case however is that novice developers take
more time to complete the given task. Therefore, considering
the protocol of our experiment, the same time is given to every
participant. This could provoke that less experienced developers
may introduce more bugs.

Task Time. The time at which a task is performed may
influence the performance [50]: some developers may work
better in the afternoon (or, even, in the night), while others
may prefer working in the morning.

B. Measuring the Factors

In the following, we describe the metrics we use to
operationalize the factors in our framework.

1) Behavioral Features: To capture the users’ behavior while
developing (i.e., keystrokes, mouse movements, active window
at a given time), we use the software activity-tracker [52].

Specifically, we capture the activity performed by the
developer by measuring the time a window is active and on
the participant’s laptop. Then, we use some simple rules to
determine the type of activity performed by the developer.



The activity-tracker tool records the time intervals in which
each window received focus and the process that is running
behind the window. We focus on two main categories of
activities: browsing the web and working in the IDE. Therefore,
we define three features that capture the usage context (UC):
(i) Browser Time (UCb), i.e., the percentage of time spent in
a browser window; (ii) IDE Time (UCi), i.e., the percentage
of time spent in the IDE used for the task; (iii) Other Time
(UCo), i.e., the percentage of time spent in other windows,
such as the desktop.

To capture the low-level actions made by the developer,
we keep into account all the interactions that a user may
have with the computer. Specifically, we use the following
features: (i) Global Number of keystrokes (KS), which we
measure by simply counting the number of keys pressed by the
developer during the whole task; (ii) Contextual Number of
keystrokes (KSc), which we measure by counting the number
of keys pressed by the developer in three different contexts, i.e.,
(while using the IDE (KSi), while using a web browser (KSb),
and while using other programs (KSo); (iii) Mouse Cursor
Movement (MCM), that we measure by tracking the length
of the path traveled by the mouse cursor during the task (in
number of pixels); (iv) Mouse Clicks (MC), i.e., the number
of clicks made by the developer during the task; (v) Mouse
Scroll (MS), which we measure by tracking the number of
pixels scrolled in any direction during the task.

2) Psychophysical Features: To capture psychophysical
aspects, we use wearable devices that record biometric signals
while developers are performing the tasks. In line with previous
studies [18], [22], [24], we use the Empatica E4 wristband
[53] to capture the heart- and skin-related metrics. Empatica is
a wearable device (in the form of a wrist-worn bracelet) that
offers real-time physiological data acquisition. As for brain-
related metrics, we use the BrainCo helmet [54]. It is equipped
with a single frontal electrode for EEG acquisition and also
offers aggregated metrics, such as attention and meditation.

First, we need the signal s in a period in which the developer
is completely relaxed: this allows us to calibrate the features
for the specific person and to avoid that specific physiological
conditions (e.g., a naturally slower HR) make the feature only
valid for a single developer or a specific category of developers.
Given a signal s obtained during the task and the same signal
sr obtained while relaxing, we first remove outlier samples,
possibly due to movement artifacts, by using a robust outlier
detection technique [55]. Then, we compute two types of
features. First, we extract generic descriptive statistics: we
compute the mean and the variance of the signals: we do
this to give the machine learning model a rough idea of the
state of the developer. If a developer is particularly stressed
on a specific day, their average heart rate may be higher than
usual, on average, during the whole task. Then, we compute
10 features that describe the relative distribution of the signals:
given a signal that ranges between a minimum value m and a
maximum value M , we divide the range [m,M ] in 10 equally-
sized bins and, for each of them, we compute the percentage
of the samples of the signals that fall in the specific bin.

This allows the model to have an idea of the distribution of
the signal. For example, if the signal ranges between 1 and
10, the first bin (b1) will contain samples in the range [1, 2),
b2 will be related to the range [2, 3), and so on. We extract
the features previously described in two separate contexts: (i)
for the whole task, and (ii) just for the last minute of activity.
The data about the whole task of the signal gives the model
a broad idea of the shape of the signal. On the other hand,
the data about the last minute could help get more interesting
information: such data may help capture a state of relief or
stress at the end of the task.

To capture the stress level, we keep into account the
following aspects:

Heart Rate (HR). This simple measure allows us to have a
rough idea of the psychophysical state of the developer; a high
HR possibly indicate anxiety, while a low HR indicates calm.
Given the HR signal, we extract the features for the whole
task, i.e., HRmean, HRvar, and HRj (for j between 1 and 10),
and the features for the last minute, i.e., HRlast

mean, HRlast
var , and

HRlast
j (for j between 1 and 10) as previously described.

Electrodermal Activity (EDA). This measure—together
with heart related information— can be a reliable indicator of
the stress level [56]. Given the EDA signal, we divide it in pha-
sic (EDAP) and tonic (EDAT) using the algorithm proposed by
Greco et al. [57]. Therefore, given such two signals, we extract
the features for the whole task, i.e., EDAPmean/EDATmean

EDAPvar/EDATvar, EDAPj /EDATj (for j between 1 and 10),
and the features for the last minute, i.e., EDAPlast

mean/EDATlast
mean

EDAPlast
var /EDATlast

var , EDAPlast
j /EDATlast

j (for j between 1 and
10). To estimate the number of times in which the stress starts
to increase, we introduce an additional feature that extracts
the number of times that the first derivative of the signal is
positive and greater than an ϵ which allows to be tolerant to
small errors by the sensor. We compute such a feature for both
the signals, both for the whole task (EDAPincr and EDATincr)
and for the last minute (EDAPlast

incr and EDATlast
incr). We use

ϵ = 0.01.
Interbeat Intervals (IBI). The heart activity is an indi-

cator of stressful situations. Therefore, we used also a finer
observation of Heart Rate Variability (HRV), such as the IBI
information. The variation between successive heartbeats is low
whether the system of a human is in more of a fight-or-flight
state. The variation between beats is high if one is in a more
comfortable state [58]. In particular, we used aggregated data
such as the mean and the variance [59].

Blood Volume Pulse (BVP). BVP represents the phasic
change in blood volume that corresponds to each heart-beat
interval [60]. According to Greene et al. [59], BVP is one of
the available measures for stress. We involved this measure—
available from the smartwatch—in our analysis.

While such features are interesting to capture on their own,
they may influence more or less the actual result depending
on how hard the developer was working while in a stressed
state. For example, a state of stress occurring while trying to
understand the problem may impact less the end result than a
state of stress occurring while writing code.



Therefore, we computed a set of features that weights
keystrokes by the stress-related signals previously described.
We call such features Weighted keystrokes (WKSc): for each
1-minute period, we measure the stress-related signals, we
normalize and average them, and we use the resulting value
as a weight for the number of keystrokes typed in that period.
Finally, we sum all such weighted keystrokes to obtain the
final WKSc value. We do this using the signals related to
heart rate (WKSHR), electrodermal activity (WKSEDAT and
WKSEDAP ), interbeat intervals (WKSIBI ), and blood-volume
pulse (WKSBV P ). To capture the concentration level, we rely
on two factors:

Attention level (ATT). We use an attention measure provided
by the BrainCo device. Such a device uses a proprietary
algorithm to combine several brain wave signals to determine
the attention level of the user at a given time. Such a
measure ranges between 0 (completely relaxed) and 100 (very
concentrated). Also for such a signal, we compute the metrics
as previously described. Specifically, we compute: ATTmean,
ATTvar, ATTj (for j between 1 and 10), ATTlast

mean, ATTlast
var ,

ATTlast
j (for j between 1 and 10).

Tiredness (TIR). We ask the developers to self-assess their
tiredness on a Likert scale from 1 (not tired) to 9 (completely
tired) both before and after each the task. Therefore, we use
two features based on such a self-assessment: TIRbefore and
TIRafter. The presence of both the features allows the model
to implicitly estimate also to what extent the task tired the
developer. We also use a binary feature, TIRfirst, that indicates
whether the task was the first of the day (true) or the developer
completed another complex task before the task at hand (false).

Finally, we use the SAM [61] questionnaire1 to capture the
emotional state of the developers. We do this both before and
after each the task. SAM provides that each characteristic of the
PAD model (pleasure, arousal, and dominance) is represented
through the use of a graphic character arranged along a discrete
scale. As for the pleasure, the SAM starts from an initial
configuration formed by a smiling and happy figure up to a
frowning and unhappy figure. As for the excitement, instead,
the SAM starts from a figure of a sleepy character with closed
eyes until the excitement, represented by the same character
with open eyes. The dominance scale shows the SAM ranging
from a very small figure — which aims to represent a feeling
of not having the situation under control — to a very large
figure, which represents a feeling of control or power. We use
three features measured on a 9-point Likert scale [62].

3) Control Features: We conjecture that there are several
ways in which developers’ experience can be captured. In this
case, we focused on the programming experience and we asked
the developers to report the number of years of programming
experience in two contexts: general programming experience
(regardless of the programming language) (PEgen), and spe-
cific programming experience (on the specific programming
language used to complete the task) (PEspec).

1 The Self-Assessment Manikin (SAM) is a technique of non-verbal pictorial
evaluation that specifically tests the enjoyment, excitement, and dominance
associated with the affective response of a person to a wide range of stimuli.

Finally, we model the time of the day at which a task is
completed (task time) as either as either AM (from 7 AM to
12 PM) or PM (from 12 PM to 7 PM).

4) Combined Features: We opted for the creation of a new
set of features with the aim of increasing the knowledge of the
data set and improving the classification performances. The
new set of features has been defined by weighting the number
of typed keys by all the features measured using Empatica
device (including the temperature). Consider the number of
keys Ks,e typed in a time slot [s, e]. Consider, then, a given
Empatica feature fs,e computed in the same time interval. We
compute the number of keystrokes weighted by f using the
following formula:

Kf =

n−1∑
(s,e)∈KS

Ks,enorm(fs,e)

where KS contains the couples of start and end time s and
e for which the key tracker recorded the number of keystrokes
(a registration for each minute of activity), and norm is a
function that normalizes the f feature between 0 and 1 by
simply using the formula norm(x) = x−min

max−min . The features
f we consider are all the ones recorded by Empatica, i.e.,
the Blood Volume Pulse BVP , the Interbeat Interval IBI , the
Hearth Rate HR, and the two EDA features (i.e., phasic and
tonic). We also included three additional features in which we
measure the number of keystrokes divided by the environment
in which the participant was (IDE, web browser, or other).

As a first step, we measure the signals and the metrics we
need to compute the features. Then, we extract the feature as
previously described. Given a set of labeled data for which
we have both (i) the features we use, and (ii) the task result
(correct or buggy) we selected the best features and train a
classifier, and then we use the related model to predict the
outcome.

IV. CONTROLLED EXPERIMENT

A. Research Questions
The goal of our study is to understand if developer-based

features, which are measured with non-invasive sensors, allow
to achieve better results than a state-of-the-art model. Our study
is steered by the following research questions:

RQ1 Do developer-based features allow to achieve better results
than code-based features? With this research question we
want to assess to what extent the developer-based features
in our framework can be used to predict if the developer
will introduce at least a bug in the code. Furthermore, we
want to compare the performance achieved by a model
leveraging developer-based features with the performance
achieved using code-based features that are used in the
literature;

RQ2 To what extent combining developer- and code-based
features improve the performance of bug prediction
models? With this research question we want to understand
if a model obtained combining our new features with the
code-related features of the baseline used to answer RQ1

allows achieving a higher classification accuracy.



B. Experiment Design

To answer our research questions, we conducted a controlled
experiment in which we invited 22 developers to complete 4
programming tasks. Our study includes both subjects (develop-
ers) and objects (tasks to be performed). As for the subjects,
we involved a group of software developers composed of both
students at the University of Molise, Italy (PhD candidates,
master, and bachelor students) and professional developers. In
total, we involved 22 developers. As for bachelor students, we
only involved those that passed the Java exam in the first year
of the degree course in Computer Science at the University
of Molise, Italy. To avoid involving young developers with
limited experience, we posed an additional constraint for the
second-year students (the youngest involved in our study),
i.e., we only invited the ones that passed the exam with the
highest score (30/30). We had to discard two of the invited
developers as we lost part of the biometric signals due to a
memory problem with one of the devices. Overall, our pool
of participants include 20 developers. More than half of the
participants (13) are young developers (bachelor students at the
2nd or 3rd year), while five and three are master students and
PhD students, respectively, and one is working in the industry.
36.4% of the developers have at least 5 years of programming
experience.

As for the objects, we first selected four problems from
LeetCode [63], an online platform commonly used by devel-
opers to exercise for coding interviews. LeetCode allows to
access a wide range of problems and provides a mechanism for
validating a solution: given the source code of the solution, the
platform runs several test cases (depending on the problem) and
reports the number of failed tests. A solution is accepted if all
the test cases pass. Furthermore, for each problem, LeetCode
reports the acceptance rate, i.e., the percentage of submissions
by the community that was accepted/rejected by the platform.
We used the acceptance rate to distinguish between easy and
hard problems to include in our study. We selected two easy
problems, i.e., with an acceptance rate greater than 70%. and
two hard problems, i.e. with an acceptance rate between 50%
and 60%. Among the candidate problems, we selected the
ones that, according to our preliminary assessment, could be
completed in about half an hour. We run a pilot study with
two participants to assess whether (i) the tasks were feasible,
and (ii) the given time was sufficient. Both the participants
were able to complete the tasks on time and declared that the
tasks were feasible. At this stage, we did not check if their
solutions were correct.

Starting from the selected problems, we defined four tasks,
two implementation tasks, and two bug-fixing tasks. The
implementation tasks consisted in solving the problem from
scratch. We randomly chose two of the problems selected from
LeetCode to define such tasks, one easy and one hard. The bug-
fixing tasks required the developers to read a partial solution
to the problem that contained at least a bug and to fix all the
bugs. Two of the authors developed a partial solution for the
two remaining problems. Table I reports the tasks we used.

TABLE I: Tasks selected from LeetCode for the controlled
experiment.

Difficulty Type Problem name Acceptance rate

Hard Implementation Roman to Integer 55.1%
Hard Bug Fixing Camelcase Matching 56.1%
Easy Implementation Split a string in balanced strings 82.4%
Easy Bug Fixing Robot return to origin 73.2%

We controlled the following variables: (i) Task type: Each
developers was asked to complete two bug-fixing and two
implementation tasks; (ii) Task difficulty: Each developer was
asked to complete two easy and two hard tasks; (iii) Time of
the day: We made sure that each developer performed exactly
two tasks in the morning and two tasks in the afternoon.

In line with this design, we defined eight groups, and we
divided the developers into such groups to avoid any of the
previously described variables influenced the results. In dividing
the developers into groups, we balanced them based on their
education level (i.e., we avoided groups with all Master students
and groups with all first-year Bachelor students). To mitigate
the risks due to fatigue, which could negatively affect the
performance, the developers completed two tasks in a session
and two tasks in another session, scheduled on a different day.
The order of the tasks in each group, however, was always
the same. The participants were asked to complete the tasks
by using the Java programming language. They were provided
with a laptop with IntelliJ IDEA Community Edition and the
software needed for tracking their activities already installed.
Also, they were asked to wear the two devices needed to
capture their psychophysical-related signals (i.e., Empatica and
BrainCo). We submitted questionnaires to the participants both
before/after the whole experiment and before/after each task.
Finally, since some psychophysical metrics required baseline
measurements, we asked the developers to watch a relaxing
video for two minutes before starting the task, to acquire
baseline biometrics. This is in line with consolidated practice
in research using biometrics in software developemnt [18],
[24], [45].

C. Data Collection

We collected (i) the biomedical signal data, (ii) the activity
tracker recordings, (iii) the contextual information, and (iv)
responses given by the developers to the questionnaires.
These data was used to compute the metrics we defined in
section III-B. We labeled each completed task according to the
outcome as either not-buggy or buggy, leveraging LeetCode.
To do so, we run the solution provided to each problem, and
we checked if the platform reported any bugs. In presence of
failure for at least a test case, we marked the instance as buggy,
while we labeled it not-buggy otherwise. It is worth mentioning
that, for some problems, LeetCode might report a negative
result only because the proposed solution does not meet some
pre-defined performance requirements. In our case, however,
we specifically excluded tasks for which such requirements
(and, thus, tests) were present so that a failure indicates that
at least a functional problem exist.



D. Machine Learning Process

We trained and tested several machine-learning classifiers
in different settings, as explained in the following. We did
this for the different sets of features we take into account
(i.e., developer-based, code-based, and combined). Our pipeline
consists of three pre-processing steps and a final model building
step.

Step 1: oversampling. The first step consisted in using a
oversampling technique, SMOTE [64], for generating synthetic
instances to balance the training dataset.

Step 2: correlation. As a second step, we ran a correlation
analysis between all the pairs of features, and we discarded
the ones with Pearson correlation greater than 0.95.

Step 3: feature selection. To further eliminate features
that would not contribute to the prediction, in the third step
we performed feature selection using a wrapper technique,
which selects the best subset of features for a specific machine-
learning classifier based on the accuracy achieved by using
them. We experimented with seven algorithms: Random Forest
(RF) [65], Logistic Regression (LR) [66], Support Vector
Machine (SVM) [67], AdaBoost [68], Stochastic Gradient
Descent (SGD) [69], Passive Aggressive Classifier (PAC) [70],
Extra Trees Classifier (ETC) [71].

Step 4: model building. After having selected the most
relevant features, we trained and tested several machine-
learning classifiers. Specifically, we made this step configurable
with 11 machine-learning algorithms: Random Forest (RF) [65],
Multilayer Perceptron (MP) [72], Logistic Regression (LR)
[66], Support Vector Machine (SVM) and Linear SVM [67],
K Nearest Neighbours (KNN) [73], Gaussian Naive Bayes
(GNB) [74], Stochastic Gradient Descent (SGD) [69], Decision
Tree (DT) [75], Bagging Classifier (BC) [76], and Gradient
Boosting Classifier (GBC) [77].

For each model, we tested all the possible combinations
of configurations. The first two steps could only be used or
not used (2 configurations each), while the third step had 8
configurations (7 algorithms, plus a configuration in which
it was not used), and the fourth step had 11 configurations.
In total, for each model, we trained and tested 352 machine-
learning models. Given a starting model and the resulting 352
machine-learning models, we picked the one which achieves
the best results in terms of overall accuracy.

To avoid overfitting, we adopted a Leave One Subject Out
(LOSO) cross-validation scheme for training and testing each
machine-learning model, in line with previous research [18],
[24], [45]. The data were splint into n folds, one for each
subject. Then, we used each of such folds — composed of
all the four instances of a given subject — as test set and the
union of the remaining folds as training set. As a result, the
data related to a single subject appears once in the test set and
n-1 times in the training set. It is worth noting that this is a
challenging scenario since the machine learning technique can
not learn any peculiarities of a specific subject.

We used the implementations of all the mentioned algorithms
available in the Keras toolkit [78].

To answer RQ1, we compare a model leveraging only
developer-based features with a state-of-the-art model leverag-
ing code-based features [11]. We could choose among many
possible bug prediction approaches available in the literature.
The most recent approaches, however, are designed to work
for big Object-Oriented programs for which a revision history
is available. In our case we don’t have such an information.
For this reason, we could not use process metrics and we
could only consider product metrics. Also, we had to exclude
most of the CK metrics [79] since we have at most three
classes in a program, while most of them are implemented
in a single class or even method. In this study, we used as
the baseline the approach introduced by Nagappan et al. [11],
who leverages a set of metrics that could be computed also at
method level. Specifically, we considered the following metrics:
number of classes, number of functions, number of executable
lines, number of parameters, number of arcs in control flow
graph, number of basic blocks in control flow graph, FanIn
(i.e., number of calling functions), FanOut (i.e., number of
functions called), and Cyclomatic Complexity. We implemented
the scripts for computing such metrics and we release them in
our replication package.

For both the models, we used the previously described
pipeline. We evaluate the performance of all models in terms
of accuracy, precision, recall, and F1-score. Given the best
performing machine-learning model selected for each of the
two compared models (developer-based and code-based), we
report the rank of the features in terms of number of times
they are selected in the 20 folds. We only report the features
selected in at least 10 folds, meaning that these values have
been selected at least for half of the participants of this study.

To answer RQ2, we first compute and report the overlap
metrics between our developer-based model and the code-based
model. To do this, we compute the percentage of instances
correctly classified (i) only by using a developer-based model
(OnlyD), only by using a code-based model (OnlyC), by both
the models (Common). Specifically, given the set of instances
correctly classified by the developer-based model, D, ad the
set of instances correctly classified by the code-based model,
C, we computed the metrics as follows:

• OnlyD = |D\C|
|D∪C|

• OnlyC = |C\D|
|D∪C|

• Common = |C∩D|
|D∪C|

As a second step, we define a combined model containing
all the features from both the models compared in RQ1 and
tested it using the previously described procedure. Similarly to
what we did to answer RQ1, we compare the results achieved
with the results obtained using the single models.

1) Replication Package: To foster future research, we
provide a comprehensive replication package [80], which
includes the detailed protocol we used for the experiment
and the scripts we used to perform the analyses described in
this paper.



TABLE II: Performances achieved by the best Developer-based
(D), the Code-based (C), and the combined (C+D) models.

Model Class Precision Recall F1-Score Accuracy

D buggy 0.77 0.85 0.81 0.76not-buggy 0.74 0.62 0.68

C buggy 0.94 0.69 0.8 0.79not-buggy 0.67 0.94 0.78

C+D buggy 0.84 0.90 0.87 0.84not-buggy 0.83 0.75 0.79

V. RESULTS

In this section, we report the results of our study. First,
we answer our research questions, and then we discuss some
interesting cases we found. The full data set used for the
analysis of the results is composed of 80 data points, each
related to a task performed by a developer. The actual number
of tasks is divided into 48 buggy and 32 not-buggy tasks.
To have an idea about the performance that can be achieved
with trivial classifiers, we tested a constant classifier—i.e., a
classifier always predicting the majority class— and a random
classifier — i.e., a classifier which randomly predicts one of
the two classes. The first one correctly classifies the outcome
of 48 out of 80 tasks (60% accuracy), while the second one
achieves 49.9% average accuracy over 1000 repetitions.

1) RQ1: Developer-Based vs Code-Based Models: The
best pipeline configuration for the developer-based model was
obtained by (i) not using oversampling, (ii) using correlation
analysis, (iii) using feature selection with a LR classifier, and
(iv) using the GBC classifier. The best configuration for the
code-based model, instead, was obtained by (i) using both
oversampling and (ii) correlation analysis — even if the latter
was not influent —, (iii) not using feature selection, and (iv)
using a SVM classifier.

We report the results achieved for the two models in Table II.
The developer-based model correctly classifies the outcome
of 61 out of 80 tasks. Of these, 41 out of 48 were correctly
classified as buggy, and 20 out of 32 were correctly classified as
not-buggy. The code-based model, instead, correctly classified
the outcome of 63 out of 80 tasks as buggy or not-buggy. Of
these, 33 out of 48 and 30 out of 32 were correctly classified
as buggy and not-buggy tasks, respectively.

The most predictive features resulting from feature selection
and evaluated in the LOSO cross-validation scheme are the
following. First, we have the features selected in all the folds.
Such features include: (i) HR-based values (such as the mean
and the variance and the InterBeat Intervals, during all the
time taken by participants to solve the assigned tasks and also
during the last 60 seconds before the final delivery; (ii) the
number of pressed keys, considered both alone and combined
with the EDA Phasic, and the number of mouse clicks. Other
features, instead, have been selected very frequently, but not
always, such as SAM values (19 times out of 20) and the
programming experience, both generic and in Java (18 times
out of 20).

For the Code-based model, instead, the best results have been
obtained when no features selection method was applied (i.e.,
all the features were used in all the folds). This is reasonable,
considering that this set of features is relatively small.

In terms of overlap metrics, we observed a considerable
percentage of instances (about 34.7%) that can be correctly
classified only considering either a developer-based (16%)
or a code-based model (∼18.7%). Indeed, only ∼65.3% of
the instances can be correctly classified by both the models.
This suggests that combining features might results in better
performance.

Summary of RQ1. A developer-based bug prediction
model achieves comparable accuracy with respect to the
code-based state-of-the-art baseline.

2) RQ2: Effectiveness of a Combined Model: The best
pipeline configuration for the combined model was obtained by
not using neither (i) oversampling nor (ii) correlation analysis,
(iii) using feature selection with SVM, and (iv) using a RF
classifier. We report the results achieved for such a model in
Table II. The model correctly classified 67 out of 80 tasks
as buggy or not-buggy (83.8% accuracy). Of these, 43 out of
48 and 24 out of 32 were correctly classified as buggy and
not-buggy tasks, respectively.

We now discuss the features selected during the process. The
programming experience (generic and Java) and the heart rate
variance during the last 60 seconds before the delivery of the
coding tasks were selected 20 out of 20 times. Other relevant
features, selected 19 out of 20 times, are (i) features related
to the number of methods and parameters involved to solve
the tasks, (ii) the subjective assessment of tiredness before and
after the completion of a task, and (iii) the keyboard activity
evaluated according to the heart rate. We provide more details
about the feature importance in the replication package.

Summary of RQ2. The combined model outperforms
the best-performing model (+5% accuracy compared to
the code-based model), achieving 84% accuracy.

VI. DISCUSSION

A. Follow-up analysis and Lessons Learned
1) An Example of Wrong Classification: We analyzed more

in-depth the classifications for the participants for whom the
developer-based bug prediction model provided the worst
results (i.e., lowest accuracy) to understand what did not work
and what could be the future research directions. To this aim,
we took a closer look at the participant for which we observed
the lowest accuracy.

Looking at the features, we found that the participant typed
less than 1,000 keys in all the tasks and shows average values
of EDA phasic higher than other participants. We tried to
train and test a rule-based classifier (JRip [81]) to understand,
specifically, which features contributed to the misclassification
based on the defined rules: we found that the EDAP10 of
the participant was beyond the threshold for classifying it as
Buggy, according to this classifier, even when he/she correctly
completed the task.



TABLE III: Evaluation of individual information sources.

Source Type Invasiveness Accuracy

Activity Tracker Program None 78%
Empatica Wristband Medium 66%
Questions Questionnaire Low 66%
BrainCo Headband High 64%

This possibly means that the participant was stressed for other
reasons but was able to correctly complete the task anyway.
According to the answers to the pre/post task questionnaires, the
developer reported a more negative emotion score compared
to the median of all the other developers (except for one
task). This roughly indicates that he/she was in a slightly more
negative emotional state compared to other participants. Also,
it can be noticed that his/her SAM levels reported before and
after the task were always the same (except for a case in which
one of the values changed by 1).

2) Individual Information Sources: Some biometric sensors
may be perceived as uncomfortable to wear in a normal working
environment. Also, asking questions to a developer before and
after a task may be perceived as intrusive and may limit the
possible applicability of our approach in practice. We perform
a further investigation to understand which information sources
are more important and which ones can be safely avoided,
without impacting the model accuracy.

Table III reports a summary of the accuracy achieved by
each individual detector. These results suggest that the activity
tracker is a fundamental information source, and it could even
be used alone. Actually, when considering the features from
such a device alone, we achieve an accuracy level similar to
the one achieved by the code-based model (79%) and higher
than the best developer-based model selected (76%). This
happens because, despite in our experiment we test several
feature selection techniques, none of them is perfect, and all of
them end up selecting a sub-optimal set of features. This is a
well-known issue in machine learning which is evident when a
large number of features are available (curse of dimensionality).
However, it is likely that this issue affects the developer-based
model and the combined-model the most, since they have
much more features than the code-based model. On the other
hand, the biometric parameters are less suitable to be used as
standalone data generators for such applications. The less suited
one is the BrainCo-based model, showing a global accuracy
only slightly higher than the constant classifier (64% vs 60%).

Given our results, the main lesson learned is that EEG-like
features are likely unsuitable for predicting the presence of
bugs. Of course, this observation should be put in perspective
and might not generalize to all the tasks and contexts. Still, our
results clearly suggest that the effectiveness achieved through
these features measured with the specific equipment we used
is very low. Further studies are needed to possibly confirm
this finding. However, we point out that future researchers
interested in human factors for bug prediction should probably
be careful when taking into account such an information source
for two reasons.

First, it appears to add a small amount of information.
Second, it can be only acquired with invasive equipment (i.e.,
an EEG helmet), at the moment, which (as we observed while
performing the experiment) might bother developers as they
can be uncomfortable to wear, especially in real-world usage
scenarios.

B. Limitations

Most of the threats to the validity of our results are related
to the external validity. The results may be mostly valid for
our sample of participants and the specific tasks we chose. We
tried to minimize this threat by (i) involving both more and
less experienced junior developers, and (ii) choosing both easy
and difficult programming tasks. Moreover, it is worth noting
that our results only refer to relatively small programs and
short time spans.

The biggest threat to the internal validity of our study
is the monitoring of participants: This might have implicitly
influenced their behaviors since they may have felt observed.
We minimized this threat by using a between-group design
to avoid learning effects, assigning the same amount of tasks
from set A and B to both groups, and giving all instructions
in written form. Also, some biomedical metrics are influenced
by the individual, as well as environmental factors, such as
lighting. We counteracted these confounding factors by having a
controlled setup with fixed screen brightness, room temperature,
and lighting.

A possible threat to construct validity regards the method-
ology used to define the theoretical framework (Section III)
on which we base the specific metrics we measure in our
experiment. Such a framework is based on an informal literature
review, mainly based on the papers we are aware of in this field.
More specifically, We used snowballing from such studies to
define a set of metrics organized in cohesive categories. It is
possible, however, that other factors or even whole categories
have an important role in predicting bugs.

A threat to conclusion validity might be related to the fact
that some of the predictors we used to capture the aspects of
interest strongly rely on the measurements provided by the
devices. To mitigate such a limitation, we tried to involve
only reliable instrumentation. Indeed, we opted for (i) the
Empatica E4 wristband because it has received the certification
of medical-grade wearable device (CE-medical certified in
the EU [53]) and (ii) a helmet produced by BrainCo [54], a
company that grew out of the Center for Brain Science at
Harvard and the Mcgovern Institute for Brain Research at MIT
to conduct R&D in wireless EEG brain wave detector.

C. Ethical Impact Statement

As far as potential application including AI-based modules
are proposed in research, ethical issues are becoming an
important concern that need to be discussed. We acknowledge
the potential misuse of sensor-based detection classifiers when
embedded in technology to monitor people’s behavior. We do
not advocate in favor of the implementation of a monitoring
technology that might have an impact on privacy.



Conversely, we advocate in favor of using sensor-based to
support developers in gaining self-awareness on possible errors
introduced in the code, like the plethora of tools available (e.g.,
linters). In the context of software development, the classifier
output could be shared with the colleagues on a voluntary basis,
e.g., to request a code-review activities in case of a predicted
high likelihood of bug introduction.

As for the risk of deceptive applications and model failure,
we are aware that our classifier requires further validation on
a larger dataset as it might not be robust enough yet to be
deployed for daily use without running the risk of incorrect
classification on new unseen data. Nevertheless, the effect
of misclassifying buggy code is limited to loosing users’
confidence that the classifier can be helpful. As for risks
connected to privacy, the data collection protocol we use to
collect data was carefully explained to the participants at the
beginning of the experiment. According to the rules at the
university that hosted the data collection, participants were
requested to sign a consent form where they give consent to
the anonymous storage and treatment of the experimental data.

VII. CONCLUSION

We introduced a developer-based model that, given behav-
ioral, psychophysical, and control factors, is able to detect if
bugs were introduced while completing a programming task.
We conducted a controlled experiment, based on a rigorous
protocol, to assess the effectiveness of our developer-based
model, and we used a code-based model as a baseline.

Our results show that our developer-based model achieves
a similar performance compared to the state-of-the-art code-
based model. We achieve higher accuracy (84%) by training a
combined developer- and code-based model. Our results can
have several implications. First, specialized training sessions
could be envisioned to (i) make developers aware of the
conditions in which they risk to introduce bugs while writing
code, and (ii) train them to avoid such conditions in the first
place. Second, our model can be used by developers to get
warnings about the possible introduction of bugs before they
make a commit, like other tools based only on the source code.
This could allow them to more carefully check the code or ask
for more rigid code reviews.

Future replications of our study may involve a larger and
more diverse pool of participants. We also plan to evaluate
the predictive power of finer-grained behavioral features, for
example for distinguishing productive use of the browser (e.g.,
for reading API documentation) and distractions (e.g., social
networks).
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