
Automatically Generating Dockerfiles
via Deep-Learning: Challenges and Promises

Giovanni Rosa∗, Antonio Mastropaolo†, Simone Scalabrino∗, Gabriele Bavota†, Rocco Oliveto∗
∗STAKE Lab - University of Molise, Pesche, Italy

{name.surname}@unimol.it
†Software Institute - Università della Svizzera Italiana (USI), Switzerland

{name.surname}@usi.ch

Abstract—Containerization allows developers to define the
execution environment in which their software needs to be
installed. Docker is the leading platform in this field, and
developers that use it are required to write a Dockerfile for
their software. Writing Dockerfiles is far from trivial, especially
when the system has unusual requirements as for its execution
environment. Despite several tools exist to support developers
in writing Dockerfiles, none of them is able to generate entire
Dockerfiles from scratch given a high-level specification of the
requirements of the execution environment. In this paper, we
present a study in which we aim at understanding to what
extent Deep Learning (DL), which has been proven successful
for other coding tasks, can be used for this specific coding
task. We preliminarily defined a structured natural language
specification for Dockerfile requirements, and a methodology that
we use to automatically infer the requirements from the largest
dataset of Dockerfiles currently available. We used the obtained
dataset, with 670,982 instances, to train and test a Text-to-Text
Transfer Transformer (T5) model, following the current state-
of-the art procedure for coding tasks, to automatically generate
Dockerfiles from the structured specifications. The results of our
evaluation show that T5 performs similarly to more trivial IR-
based baselines we considered. We also provide some guidance
for you to explore to try and successfully harness the power of
deep learning models for Dockerfile generation.

Index Terms—docker, deep learning

I. INTRODUCTION

Software companies are more and more often starting adopt-
ing the DevOps methodology for developing their products.
DevOps strongly relies on technologies for automating the
build and the deployment of the systems (CI/CD), and it results
in shorter release cycles [1]. In this context, containerization
technologies are fundamental to allow developers take control
over the execution environment of their products. Such tools
allow developers to reduce the risks of issues arising from
possible differences between the development/testing environ-
ment and the production environment. Docker is the leading
containerization technology, becoming the “Most Loved” and
“Most Wanted” platform, according to the 2022 Stack Over-
flow survey [2]. When using Docker for a specific software
product, developers are required to write a Dockerfile, which
contains a sequence of instructions that, when executed, allow
to build an image (Docker image) which can be run in one or
more lightweight virtual machines (Docker containers).

Writing Dockerfiles is not trivial. First, basic system ad-
ministration skills are required, and developers do not always

Fig. 1: Example of Dockerfile for Tomcat and FFMpeg.

1 FROM tomcat:7.0.75-jre8
2
3 RUN echo deb http://archive.ubuntu.com/ubuntu precise universe multiverse

>> /etc/apt/sources.list; apt-get update && \
4 apt-get -y --fix-missing install autoconf automake build-essential \
5 git mercurial cmake libass-dev libgpac-dev libtheora-dev libtool \
6 libvdpau-dev libvorbis-dev pkg-config texi2html zlib1g-dev \
7 libmp3lame-dev wget yasm && \
8 apt-get clean
9

10 WORKDIR /usr/local/src
11 # Install x265
12 RUN hg clone https://bitbucket.org/multicoreware/x265 && \
13 cd /usr/local/src/x265/build/linux && \
14 cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr ../../source && \
15 make -j 8 && \
16 make install
17
18 WORKDIR /usr/local/src
19 # Install ffmpeg.
20 RUN git clone --depth 1 && \
21 cd ffmpeg && \
22 git://source.ffmpeg.org/ffmpeg && ./configure \
23 --extra-libs="-ldl" --enable-gpl --enable-libass \
24 --enable-libvorbis --enable-libx265 --enable-nonfree && \
25 make -j 8 && \
26 make install
27
28 WORKDIR /

have them. Second, while basic Dockerfiles templates can be
used as a starting point, they need to be adapted to the specific
requirements of the software system at hand. To clarify this,
let us consider the scenario in which a developer needs an
environment that contains both Apache Tomcat as a web server
and FFMpeg for processing videos, with the support of the
x265 codec. While templates exist for the former, they do
not contain hints about how to provide also the latter. Fig. 1
shows an example of possible solution: Such a Dockerfile
starts from a pre-defined image which contains Tomcat and
it installs FFMpeg with the support of x265 on top of it.
It can be noticed that determining the commands required
to achieve the latter goal requires a moderate effort and it
is prone to errors. This problem has been observed in the
literature. For example, in the survey conducted by Reis et al.
[3], the authors observed that developers (especially the less
experienced ones) perceive the creation of Dockerfiles as a
time consuming activity. Moreover, using Dockerfiles from
tutorials and blob posts as a support for their creation can
lead to broken Docker images [4].

Some tools and approaches have been introduced to help
developers to write Dockerfiles. Some of them [5]–[9] take
as input the context (i.e., the root folder of the project) and
suggest whole Dockerfiles based on it. Such tools are handy
since they allow developers to quickly have a base from
which they can start. They also require limited effort from

the developers (i.e., they only need to specify the root of the
project). However, they are not able to recognize the need
for specific libraries (like FFMpeg, in the previous example).
Other tools provide a more in-depth support, but they are
limited to specific programming languages (e.g., DockerizeMe
for Python). The approach recently introduced by Ye et al. [10]
can recommend packages that need to be installed given an
initial set of dependencies, but it only supports developers in
the definition of the dependencies to install. The developer still
needs to write complex instructions, like the ones required to
build the FFMpeg and x265 libraries in Fig. 1.

Finally, there are code completion tools that support devel-
opers while writing Dockerfiles. A recent example is GitHub
Copilot [11], which relies on Deep Learning (DL) to achieve
this goal. Such tools, however, require that developers manu-
ally write part of the Dockerfile, so that they can complete
it. None of such tools and approaches is able to generate
complete Dockerfiles from a high-level description of what
the developer wants in the Dockerfile (i.e., requirements).
Previous research [12]–[15] show that DL is a viable solution
for code generation-related tasks. However, to the best of our
knowledge, no previous work tested to what extent DL can be
used to generate complete Dockerfiles.

In this paper, we aim to fill this gap. We first define
the format of a structured high-level specification to define,
via natural language, the requirements for the definition of
Dockerfiles. Then, we define a methodology for automatically
inferring such a high-level specification (HLS) from existing
Dockerfiles, so that we can build a dataset large enough to
train and test a DL model. To this aim, we rely on the largest
collection of Dockerfiles available in the literature [16], con-
taining 9.4M Dockerfile snapshots extracted from all the open-
source projects hosted on GitHub. We run our specification-
inference tool on them and, after a filtering procedure, we end
up with a set of 670,982 pairs ⟨HLS, Dockerfile⟩. We use
this dataset to train and test a state-of-the-art DL model, the
Text-to-Text Transfer Transformer (T5) [17], which has been
proven effective when supporting several coding tasks [13],
[14], following the same pipeline defined in the literature.
We compare the DL-based approach with two Information
Retrieval (IR)-based approaches, and we check to what extent,
given a HLS, the output Dockerfiles of the three techniques:
(i) meet the input requirements, (ii) are similar to the target
Dockerfile, and (iii) allow to build a Docker image similar to
the target one.

We obtain mixed results: While T5 achieves similar results
to the best baseline in terms of adherence to the requirements,
it generates Dockerfiles less similar to the target Dockerfile.
On the other hand, we found that the build of the Dockerfiles
generated with T5 succeeds more often and that a higher
percentage of intermediate layers produced during the build
match the ones obtained with the target Dockerfiles. Interest-
ingly, we also found that T5 truncates the Dockerfiles. This
might be due to two main issues. First, a larger training
dataset might be needed for this task: Despite we consider
the largest collection of Dockerfiles in the literature [16],

our results suggest that the T5 learning could benefit from
more training data as the existing studies working on regular
source code. Second, a different T5 training stop criterion
needs to be defined: The stop criterion we adopt, which
is the one currently used for coding tasks [14], is based on
the convergence in terms of BLEU-4 score of the generated
predictions. However, considering our results, it seems to be
ineffective in the evaluated context.

II. BACKGROUND & RELATED WORK

Writing a Dockerfile is the first step to containerize an
application using Docker. A Dockerfile specifies the depen-
dencies and execution environment to build and execute the
target application using domain-specific instructions [18]. The
first instruction is the FROM, which defines on which existing
image the new image builds upon, i.e., the base image. Then,
we have instructions that perform actions during the build,
such as RUN, to execute scripts, WORKDIR, to change the
working directory, and COPY/ADD, to copy files, folders and
compressed archives. Other instructions are for metadata and
documentation (LABEL, EXPOSE), build arguments (ARG),
environment variables (ENV), and commands that the container
must execute when the image is run (CMD, ENTRYPOINT).
Each Docker image built from a Dockerfile is uniquely iden-
tified by a digest, a hash value computed upon the files that
compose the image. While building a Dockerfile, Docker cre-
ates a layer for each instruction, which constitutes a temporary
image that allows to cache and speed-up the next build by
avoiding the build of previously-built layers, when possible.
The layers are also identified by a unique digest.

Several tools and approaches are available to help develop-
ers in writing Dockerfiles. Due to space constraints, we only
focus on such approaches, which are the most related to our
work. GitHub Copilot [11] has been recently introduced as a
general-purpose code completion tool, and it works also with
Dockerfiles. Humpback [19] achieves a similar goal, but it is
specifically designed for Dockerfiles. The tool by Zhang et al.
[20] helps developers choosing the right base image. Other
approaches provide more advanced support. Horton et al.
[5] proposed DOCKERIZEME, an approach for the automatic
inference of environment dependencies starting from Python
source code, without requiring inputs from developers. How-
ever, it only targets the execution dependencies for Python
code. Ye et al. [10], proposed DOCKERGEN, an approach
that uses knowledge graphs, built upon 220k Dockerfiles,
for generating Dockerfiles for a specific software application.
Starting from a target software, DOCKERGEN infers all the
dependencies required for the execution environment including
the selection of a suitable base image. However, the support
provided by DOCKERGEN is limited to the recommendation
of dependencies, while we aim at generating complete Docker-
files (including, for example, the RUN instructions required for
building an external package, as the ones in Fig. 1). Other tools
take as input the context (i.e., the root folder of the project)
and suggest whole Dockerfiles based on it. An example is
the tool starter [7], that generates a Dockerfile and a docker-

Field Type Description % Positive Answers

OS String Operating system to be used. 75%
Package Manager String Linux package manager to be used (e.g., apt or apk). 58%
Dependencies String[] Dependencies (e.g., packages) that must be provided. 83%
Download of External Dependencies Boolean Dependencies can be installed as external resources (i.e., not through the package manager). 58%
Usage of ENV Boolean Environment variables must be supported for customizing the container. 83%
Usage of ARG Boolean Arguments must be supported for customizing the image build process. 75%
Usage of LABEL Boolean Labels must be used for documenting the Dockerfile. 50%
Usage of EXPOSE Boolean Network ports used must be documented. 67%
Usage of CMD Boolean The command to execute when starting the container must be specified through the CMD or

ENTRYPOINT command.
75%

Usage of ENTRYPOINT Boolean 75%

TABLE I: Format of HLSes, with the type of each field, a description, and the percentage of survey participants who indicated
the field as important.

Dockerfiles from
the latest commits

Number of
stages = 19.4M

Dockerfiles
769k

Dockerfiles

Number of
comments > 0

670k
Instances

Extraction of the
HL specification

Discard Dockerfiles
having invalid or

empty commands
DockerfilesHL spec.

PT: 558k

Pre-Training and
Fine-Tuning datasets

FT: 113k

T5 model
training

Handling duplicated
HL requirements using

Jaccard similarity

Input High-Level
Requirements

Steps 1-4

STOP OS

Wordlists Step 0

T5

Output
Dockerfile

Fig. 2: Steps performed to train T5 for generating Dockerfiles from specifications.

compose.yml file from arbitrary source code. Some other tools
provide a more in-depth support for specific programming
languages, based on the project context. For example, there
are tools specific for R [6], Node.js [9], Ruby [8], and PHP
[21]. Others support multiple languages, such as generator-
docker [22].

To the best of our knowledge, no previous work introduced
an approach that is able to generate complete Dockerfiles given
high-level requirements.

III. DEEP LEARNING FOR GENERATING DOCKERFILES

We define a procedure to train a DL model for the genera-
tion of Dockerfiles from high-level specifications.

In Fig. 2 we report the workflow we used to train a
DL-based model (T5) for the generation of Dockerfiles. We
first define a structured high-level specification (HLS) for
Dockerfiles. Then, we extract HLSes from existing Dockerfiles
through an automated approach. Finally, we use such a dataset
to train the T5 model for the generation of Dockerfiles (HLS
→ Dockerfile). In the following, we describe in detail the steps
to construct our model.

A. Dockerfile High-Level Specification

Natural language can be used as an effective tool for
reporting the requirements of the source code. When it comes
to Dockerfiles, however, the high-level requirements that can
be expressed are much more limited. For the source code,
a developer might want to specify, for example, constraints
on the input parameters and conditions that lead to errors.
On the other hand, for Dockerfiles, it boils down to a matter
of what the developer wants installed in the container, plus
a few more characteristics. Thus, to standardize the format
of a Dockerfile requirements specification, written in natural
language, the idea is to define a set of key-value requirements.

In a real-world application, it could be seen as a structured
form where, for each field, the developer specifies the values
to meet the requirements. Based on the commands available in
Dockerfiles and on how Dockerfiles are generally structured
(based on our experience), we distilled a structured format for
high-level specifications (HLSes), which we report in Table I.

We did not include in the specification requirements
related to particular Dockerfile commands (i.e., ADD,
COPY, HEALTHCHECK, MAINTAINER, ONBUILD, SHELL,
STOPSIGNAL, USER, VOLUME, WORKDIR) for three reasons:
First, they are related more to low-level details (e.g., how the
user of the Dockerfile should be set up); Second, in general,
developers do not frequently use all of them [16], [23]; Third,
some of them are deprecated (i.e., MAINTAINER). Ideally, our
approach automatically generates such low-level instructions
when needed, i.e., based on the instruction needed by the
application that must be containerized. Also, developers might
still easily tune them up on the generated Dockerfile, if they
want to.

To validate the specification structure, we run a survey in
which we asked 12 professional software developers with at
least 2 years of experience with Docker whether they would
want to specify each of the fields we hypothesized to be
relevant in a HLS (binary yes/no question). We report the
results in Table I. All the fields are important to at least 50% of
the participants. The field which results to be relevant for the
lower number of developers is Usage of LABEL (50% positive
answers), while the most important ones are Dependencies and
Usage of ENV (83% positive answers for both of them).

B. Inferring Requirements from Existing Dockerfiles

We need a large amount of associations HLS → Dockerfile,
to train a DL-based Dockerfile generation model. While Dock-
erfiles are largely available, this does not hold for the require-

ments behind them. The latter could be manually inferred, but
such a process would be infeasible for a large-scale dataset.
Thus, we defined an automated procedure for inferring the
HLS behind an existing Dockerfile. In summary, the process
works as follows. Given a list of operating systems (WLOS)
and stop words (WLstop), we extract the operating system (step
1), the software dependencies (step 2), and, finally, the other
fields required for HLS (step 3). In the following, we describe
in detail each step of our methodology, and the procedure we
used to define the two previously-mentioned lists of words.

1) Step 1: Inferring the OS: To infer the OS required
by the developer, we only focus on the FROM instruction,
which comes in the format FROM <name>[:<tag>]. Since
<name> and <tag> are usually composed by one or more
words, we extract them by splitting their content of image
name and tag by the typically employed as separators, i.e., -
and _. We first check if any word in the WLOS is present in the
words extracted from the tag, and then in the name. If a OS-
related keyword is present, we set OS with such a keyword,
while we use the special keyword “any” otherwise, indicating
that the developer did not have any requirement in terms of op-
erating system. If more than a OS-related keyword is present,
we consider the first match found. For example, for the instruc-
tion FROM tomcat:9.0.20-jre8-alpine, we extract
the keywords (in the order): “9.0.20”, “jre8”, “alpine” (from
the tag), and “tomcat” (from the image name). “alpine” is the
first (and only, in this example) OS-related word. Therefore,
we set OS to “alpine”. If the first OS-related keyword is
found in the image name, we also add to it all the keywords
containing only numbers from the tag name, which most likely
refer to the version number. For example, for the instruction
FROM debian:10-slim, we set OS to “debian10”.

2) Step 2: Inferring Software Dependencies: Software de-
pendencies might be present in several Dockerfile instructions.
The first instruction which might contain dependencies is
the FROM instruction. To detect the (possible) dependencies
explicitly expressed in such a field, we extract all the words
from the image name (with the same procedure described in
step 1), we remove the words in WLOS (OSes) and WLstop
(stop words), and we exclude the non-alphabetic words.

All the remaining words are added to the list of soft-
ware dependencies (Dependencies). In the previous example,
FROM tomcat:9.0.20-jre8-alpine), the dependency
extracted (and only word used as image name) is “tomcat”.
At this point, we need to extract all the other dependencies,
installed with package managers or with other procedure (e.g.,
downloaded and installed). This task is far from trivial. Simply
considering the packages installed through package managers
(e.g., apt install) might seem the natural step to achieve
this goal. However, this is not an option: Most of the packages
installed do not correspond to high-level requirements, but
rather to low-level details about support libraries required to
make some other software work. For example, in Fig. 1, the
package build-essential is not a dependency of the
software system, but rather a package incidentally needed (in
this case, for building two actual dependencies, i.e., x265 and

ffmpeg). We want our DL model to automatically infer the
need of such packages.

However, it is known that developers tend to give an
explanation comment of what each Dockerfile instruction does.
Thus, we can use those comments to extract only high-level re-
quirements, which are reported by the developers themselves.
To achieve this, we use the following heuristic. We first select
all the comment lines that contain the word “install”. We
tokenize each comment with the spacy Python library [24],
and we detect the words that depend on such a keyword. We
discard from the obtained list all the words in WLstop, and
we select the remaining ones as candidate dependencies for
the specific comment line. For each comment line ci with
its candidate list of dependencies dci , we process each RUN
instruction between c and the next comment line (ci+1) or
blank line. We use bashlex [25] for parsing the bash script in
each RUN instruction, and we split it in statements. Finally,
we consider only the statements in which the most common
package managers (i.e., apt, yum, apk, pip, and npm) and
commands for downloading files (i.e., curl and wget) are
present, and we extract their arguments. If there any argument
(packages) matches a candidate requirement (from the com-
ment), we add the candidate requirement in Dependencies.
Note that we do not simply consider the words depending on
the “install” word from the comments because some words
might not be software dependencies (e.g., in “install only
ruby,” the word “only” should be ignored). Finally, we exclude
duplicates, and we set the Dependencies with the dependencies
extracted both from the FROM instruction and from the RUN
instructions.

3) Step 3: Parsing Additional Fields: All the remaining
fields are straightforward to be set. For the fields Usage of
ARG, Usage of CMD, Usage of ENTRYPOINT , Usage of
ENV , Usage of EXPOSE, and Usage of LABEL, we simply
check if at least one of the respective instructions is present
in the Dockerfile. The field Package Manager is defined by
checking if any of the most commonly used package managers
for Linux distributions (i.e., apt, apk, and yum) are used
in the RUN instructions. If this is the case, we set Package
Manager to such a package manager (e.g., Package Manager
= yum). We also check for the coherence between the package
manager and the OS (Linux distribution) detected in step 1:
For example, if the OS is ubuntu, the package manager can
not be yum. If this happens, or if no specific package manager
is detected (e.g., no package is installed), we set Package
Manager to any. Finally, for the field Download of External
Dependencies, we check if any RUN instruction contains one
of the following: (i) a link in the context of a download-related
instruction (e.g., wget or git clone); (ii) the installation
of a Python or JavaScript external library; (iii) the installation
of an external package through the package managers (e.g.,
dpkg for Debian/Ubuntu). If this happens, we set Download
of External Dependencies to true (false otherwise).

4) Defining OSes and Stop Words: We use a systematic
procedure for defining the two list required by the HLS parser,
i.e., WLOS and WLstop. We extracted all the FROM instructions

contained in the Dockerfiles from the collection by Eng et al.
[16], that we later use to build our dataset. In total, we obtained
10,960,563 instructions. Then, we extract keywords from the
image name and tag, like we do in step 1. Next, we discard
the words that (i) contain only non-alphabetic characters (e.g.,
version numbers), or (ii) have less than 3 characters (most
likely stop words). We obtain a list of 46,070 unique words,
along with the respective count of occurrences. We filter out all
the words with less than 150 occurrences, thus obtaining 2,120
words, covering 97% of the total occurrences of all the words
extracted. We manually analyzed and labeled each of them as
“OS”, “stop word”, or “dependency”. For example, “centos” is
marked as “OS” keyword, “baseimage” as “stop word”, while
“python” as “dependency”. In the end, we obtained 920 stop
words for WLstop and 74 words referring to OSs for WLOS.

C. Defining a Dataset of HLSes and Dockerfiles

We proceed with using our parser to build the dataset of
HLSes and target Dockerfiles. We use the dataset built by
Eng et al. [16], which is the largest (9.4M) and the latest
dataset of Dockerfiles currently available in the literature. That
dataset comes from the S version of World of Code (WoC)
[26], covering a period of time ranging between 2013 and
2020. To the best of our knowledge, this is the most recent
and large collection of Dockerfiles available in the literature.
The dataset provides all the versions (snapshots) of all the
Dockerfiles extracted from GitHub projects, along with the
related commit ID. For building our dataset, we only select
the latest commit for each repository. As a result, we obtain
3,010,141 Dockerfiles.

We filter out all the Dockerfiles that have no comments
(required in step 2 of the parser), and also those that have
more than one stage, as they are currently not supported by our
parser. Next, we drop all the duplicated Dockerfiles (according
to their sha1 hash) and all the Dockerfiles that contain in the
FROM instruction at least a keyword that we did not manually
evaluate when defining the two lists WLOS and WLstop, to
ensure that we do not unintentionally include stop words as
dependencies. After applying these filters, we obtain a total of
769,385 Dockerfiles, on which we run our approach to extract
the HLSes.

At this stage, we further exclude all the Dockerfiles for
which our parser detected syntax errors in bash instructions
and empty Dockerfile instructions (e.g., COPY without argu-
ments). As a result, we obtain a total of 670,982 pairs of Dock-
erfile, associated with the respective HLSes (in total, we found
121,030 unique HLSes). At this stage, each HLS is associated
with one or more Dockerfiles since different Dockerfiles might
result from the same requirements. We need, however, to select
a single representative Dockerfile for each HLS that we can
use for the training and the test of T5. To do this, we first
select all HLS associated with two or more Dockerfiles. We
found 41,820 of them. Given a set of Dockerfiles associated
with the same HLS, we select the one containing the highest
number of “typical” instructions for that cluster, to obtain the
most typical Dockerfile for the given HLS. We tokenize each

instruction of all the Dockerfiles. Then, given two Dockerfiles
A and B, we compute the Jaccard similarity between each
pair of instructions of the same kind (e.g., COPY instructions
are compared only with COPY instructions), with the formula
J(WAi

,WBj
) =

|WAi
∩WBj

|
|WAi

∪WBj
| , where WAi

and WBj
are the

words from instructions i and j of A and B, respectively. We
choose as representative the Dockerfile with the highest mean
similarity over all the instructions.

We further process the Dockerfiles to prepare them to the
training procedure: First, given all the package installation
instructions (e.g., apt install), we sort the packages in
lexicographic order, to avoid that different package orders
confuse the DL approach. Second, we remove all the lines that
contain only comments, to avoid that the model makes extra
efforts in solving a sub-problem which is not in the scope of
this paper.

From this, we extract two sub-datasets: DPT for the pre-
training, and DFT for the fine-tuning of the T5 model. As
for the former, we use all the Dockerfiles discarded while
choosing the representative Dockerfiles for each HLS and all
the Dockerfiles that are associated with a HLS for which
the field Dependencies is empty (no software dependency
needs to be installed). It is most likely that such Dockerfiles
do have dependencies, but we were not able to find them
because of the lack of comments in the format we expected
(e.g., the word “install” has not been used in comments). All
the remaining pairs ⟨HLS, Dockerfile⟩ are placed in DFT. In
the end, we obtain 557,540 instances for DPT and 113,442
instances for DFT. As a requirement for the training of T5,
we can only use Dockerfiles having no more than 1024 token,
obtaining a total of 113,131 instances. Then, we divide the
DFT in training- (DFT-train), evaluation- (DFT-eval), and test-
(DFT-test) sets, by performing a typical 80%-10%-10% spliting
[13], [14], obtaining 90,504, 11,313, and 11,314 instances,
respectively. We use DFT-train for fine-tuning T5, DFT-eval for
the hyper-parameter tuning, and DFT-test for our experiment
(see Section IV).

D. Training T5 for Generating Dockerfiles

Raffel et al. [17] introduced T5 to support multitask learning
in Natural Language Processing. Such a model re-frames NLP
tasks in a unified text-to-text format in which the input and
output of all tasks are always text strings. A T5 model is
trained in two phases: (i) pre-training, in which the model is
trained with a self-supervised objective that allows defining
a shared knowledge-base useful for a large class of text-to-
text tasks, and fine-tuning, which specializes the model on
a specific downstream task (e.g., learning the translation of
sentences between different languages). As previously said,
T5 already showed its effectiveness in code-related tasks
[13], [27]–[32]. However, its application to the generation of
Dockerfiles is novel and still unexplored. As done in previous
work [13], [27], we use the smallest T5 version available
(T5 small), which is composed of 60M parameters. Given a
prediction provided by the model, the output token streams can
be generated using several decoding strategies. We use greedy

decoding when generating an output sequence. In detail, such
a strategy selects, at each time step t, the symbol having
the highest probability of appearing in a specific position.
We describe below both the pre-training and the fine-tuning
procedure we applied for this task.

1) Pre-Training Procedure: The “general knowledge” [17]
that we want to provide our model with is, in our case, a
mixture of technical natural language (English) and technical
language (Dockerfiles). We experiment with three pre-training
variations: T5NL, which only relies on natural language,
T5DF , which only relies on Dockerfiles, and T5NL+DL, which
relies on both. We test all such three variants and we pick the
best after performing hyper-parameter tuning.

As for the first variant, T5NL, we use the pre-trained
checkpoint [33] released by Raffel et al. [17]. We do not
perform any further pre-training for such a model.

Instead, we leverage the knowledge that has been already
gained when pre-training the T5 model on the English text
(C4 corpus [17]) for 1M steps.

As for the second variant, T5DL, we adopt a classic masked
language model task, i.e., we randomly mask 15% of the
tokens in a training instance, asking the model to predict them.
We pre-train such a model on DPT. Finally, as for the third
variant, T5NL+DF , we start from the T5NL model and we
further pre-train it for 500k steps on DPT, using the same
procedure used for pre-training T5DF . Finally, we created a
new SentencePiece model [34] for tokenizing natural language
text. We trained it on DPT. For both the models for which we
performed additional pre-training steps (T5DF and T5NL+DF),
we used a 2x2 TPU topology (8 cores) from Google Colab
with a batch size of 16 and a sequence length of 512 tokens
for the input and 1,250 for the output. As a learning rate,
we use the Inverse Square Root with the default configuration
[17]. For the pre-training phase, we use the default parameters
defined for the T5 model [17].

2) Hyper-parameter Tuning: We test four learning rate
strategies, i.e., constant learning rate (C-LR), slanted triangular
learning rate (ST-LR), inverse square learning rate (ISQ-LR),
and polynomial learning rate (PD-LR). We report in Table II
the parameters we use for each of them.

Given the three pre-trained models, T5NL, T5DF , and
T5NL+DF , we fine-tune them on DFT-eval (100k steps, batch
size of 32, input sequence length of 512 tokens , output se-
quence length of 1024 tokens), leading to 12 different models
(3 models × 4 strategies). Then, to assess their performance,
we compute the BLEU-4 [35] metric between the generated
Dockerfiles and the target ones. Such a metric has been used in
previous work for other coding tasks [13], [14], [36], [37] and
it ranges between 0 (completely different) and 1 (identical).
We report in Table III the results achieved by the 12 models
in terms of BLEU-4. The best results are achieved with T5DF

with the ISQ-LR strategy and T5NL+DF with the ST-RL
strategy (17.20% BLEU-4 for both). In the end, we select the
latter since T5NL+DF achieves better results also for the other
strategies.

TABLE II: Configurations for the experimented learning rates

Strategy Parameters Strategy Parameters

C-LR LR = 0.001 ISQ-LR LRs = 0.01
ST-LR LRs = 0.001 W = 10,000

LRmax = 0.01 PD-LR LRs = 0.01
Ratio = 32 LRe = 0.001
Cut = 0.1 Pow = 0.5

TABLE III: T5 hyper-parameter tuning results (BLEU-4).

Experiment C-LR ST-LR ISQ-LR PD-LR

T5NL 13.80% 13.70% 5.50% 14.50%
T5DF 16.90% 5.50% 17.20% 15.90%
T5NL+DF 16.60% 17.20% 16.50% 17.10%

3) Fine-tuning: We fine-tune the best pre-trained model
(T5NL+DF) with the best learning rate strategy (ST-LR) on
DFT-train. We use early stopping to avoid overfitting [29], [38]:
We save a checkpoint every 10k steps and compute the BLEU-
4 score on the evaluation set every 100k steps. When the 100k
steps do not lead to an improvement, we stop the training
procedure, and we keep the last model.

IV. EMPIRICAL STUDY DESIGN

The goal of our study is to understand to what extent T5 is
effective in generating Dockerfiles. Our study is steered from
the following research questions:
RQ1: To what extent is T5 able to generate Dockerfiles

meeting the input natural language specification? We
evaluate the effectiveness of T5 in generating Dockerfiles
that meet the requirements.

RQ2: To what extent are the Dockerfiles generated by T5
similar to the original ones written by developers? With
this second RQ, we aim at understanding if T5 generates
Dockerfiles similar to the targets ones.

RQ3: To what extent are the Docker Images built from the
Dockerfiles generated by T5 similar to the original ones
built form the Dockerfiles written by developers? Two
Docker images can be equal and come from completely
different Dockerfiles. Therefore, with this last RQ, we try
understand whether the images built from the generated
Dockerfiles are similar to the original ones.

A. Baseline Techniques

We use as baseline techniques two Information Retrieval
(IR)-based approaches. The first one is IRES , and it is based
on the state-of-the-practice for implementing IR approaches
and search engines, i.e., Elasticsearch [39]. Given a collection
of documents (D) and a query (q), Elasticsearch first assigns
a score to each document in D according to q and then it
sorts them. The score is computed with Okapi BM25 [40]. We
add into an Elasticsearch instance all the instances in DFT-train.
Specifically, for each instance, we define a document that
contains both the HLS and the associated Dockerfile. Given
a new HLS for which we want to get a candidate Dockerfile,
we perform a boolean query composed of all the fields of the

HLS in OR clause (i.e., should, in Elasticsearch). We report
an example of the query in our replication package [41].

The second baseline we consider is IRST , and it is based on
the SentenceTransformers framework [42]. Such a framework
allows to train embeddings for several data types (including
text) so that they can be represented as numeric vectors.
First, we use DFT-train to train the model for computing
the embeddings (bert-base-uncased). Then, we compute the
embeddings for each HLS as e(dSpec) for each HLS in
DFT-train, and we store their associations with the respective
Dockerfiles (e(dSpec) → dDockerfile). Given a new HLS, tSpec ,
we compute its embeddings (e(tSpec)) and, then, the cosine
similarity between e(tSpec) and each e(dSpec). Finally, we
return the dDockerfile for which the aforementioned similarity
is maximum.

B. Context Selection

The context of our study is composed of (i) a set of
associations HLS → Dockerfile, (ii) the Dockerfiles gener-
ated/retrieved by T5 and the two baseline techniques, and
(iii) the source code of the software projects for which the
Dockerfiles need to be built, for building the images and thus
answering RQ3.

As for the first object, we used the DFT-test dataset. To
obtain the second object, we ran T5, IRES , and IRST on the
HLSes from DFT-test. As a result, we obtained three sets of
generated/retrieved Dockerfiles, i.e., DFT5, DFES , DFST . Fi-
nally, to obtain the third object, for each Dockerfile in DFT-test,
we consider the original entry in the dataset by Eng et al.
[16] and we recover the project from which it was extracted
and the commit for that specific snapshot. We cloned all the
repositories corresponding to the test instances, discarding the
ones for which the source commit or repository was no longer
available. As a result, we obtained a total of 3,909 repositories,
corresponding to 4,059 instances of DFT-test. Since building
Dockerfiles requires a large amount of time, we did this for a
representative sample of 500 Dockerfiles from DFT-test (4.28%
margin of error, 95% confidence level). For each instance in
DFT-test, we tried to build the original Dockerfile: If the build
failed, we discarded the instance, while, if it succeeded, we
kept it, until we collected 500 instances.

C. Experimental Procedure

To answer RQ1, we compare the HLS related to the
Dockerfiles returned by the three approaches we consider with
the one given as input. As for the two baselines, we already
have an associated HLS for each returned Dockerfile (i.e., the
one from DFT-train). This, however, is not true for T5 since
it generates Dockerfiles from scratch. In this case, we use
the same process described in Section III-B on the generated
Dockerfiles for all the fields, except for Dependencies. In this
case, we check if requirements in the HLS given as input
are met in the generated Dockerfile. The reason is that we
trained T5 not to generate comments: Since our procedure for
extracting Dependencies strongly relies on comments, we can
not directly use it on the generated Dockerfiles. We ignore the

Dockerfiles generated by T5 for which the parser we defined
is not able to infer all the fields in the HLS (1,337 instances,
i.e., ∼12% of the total). We consider, instead, all of them
for the two baselines, for which this cannot happen since, as
mentioned, we do not infer the HLS. Finally, we measure the
similarity between the target HLSes and the obtained ones. To
achieve this, we assign a score for each field of the HLSes,
compared to the respective instance in the target HLS, which
is computed by assigning 1 point if the field is equal, and 0
otherwise. The only exception is the Dependencies field: Since
this is a collection of elements, in this case we compute the
score by computing the percentage of elements in the target
HLS that are present also in the obtained one (i.e., the recall).
We compute and report the mean score obtained for each field
of the HLSes.

To answer RQ2, we compare the sets DFT5, DFES , DFST

with the respective target Dockerfiles. Simply computing
textual similarity for Dockerfiles is not sufficient since, in
many cases, instructions can be swapped without affecting
the final result. Therefore, we rely on the AST representation
of the Dockerfiles. To do this, we use the binnacle tool by
Henkel et al. [43]. Binnacle extracts ASTs at three different
abstraction levels. We use the phase-2 representation. We do
not use the phase-3 abstraction level since it abstracts the bash
commands. For example, both the apt-get install and
pacman -S instructions get replaced with a generic package
install. While such an abstraction is useful, the tool does not
support all the possible bash commands, thus causing loss of
information, in some cases. We report an example of a parsed
AST in our replication package [41]. Given the ASTs of two
Dockerfiles, we compute the edit distance between them, i.e.,
the number of modifications needed to transform one into the
other, using the Zhang-Shasha algorithm [44]. We normalize
the obtained edit distance by dividing it by the sum of the
sizes of the two trees we are comparing. We discard all the
instances for which the binnacle tool is not able to extract the
AST. We obtain 9,963 for T5, 11,311 for IRES , and 11,129
for IRST . We run the Mann–Whitney U test [45] to compare
T5 with the baselines in terms of normalized edit distance.
The null hypothesis is that there is no difference between the
edit distance obtained using T5 and the one obtained using an
IR-based approach. We correct for multiple comparisons using
the Benjamini-Hochberg procedure [46]. Finally, we compute
the effect size using Cliff’s Delta [47], which is negligible for
all of the performed comparison (i.e., T5 compared with the
two baselines). This means that their difference is negligible,
even if it is statistically significant.

To answer RQ3, we compare the Docker images built from
the resulting Dockerfiles provided by the three techniques and
the one built from the target Dockerfile. We consider the
GitHub projects we cloned for the sample of 3,909 instances
and, for each of them, we replace the original Dockerfile with
the one generated/retrieved by the three approaches, one at a
time, and we try to build it. For each instance, we memorized
(i) if the build succeeded, (ii) if the the original and the
obtained images are equal, and, if not, (iii) to what extent the

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
S

T
 e

di
t d

is
ta

nc
e

T5 IRES IRST

Fig. 3: Boxplots of the normalized AST edit distance (RQ2).

latter provides what is also present in the former. As for the
second measurement, we rely on the image digest: We say that
two images are equal if their digest are equal. While this is not
true by design, we can safely assume that, in our context, the
risk of obtaining different images with the same digest is neg-
ligible. As for the third measurement, we compute the digest
of each build layer (i.e., one for each Dockerfile instruction),
and we compute the percentage of layer digests of the image
resulting from the original Dockerfile that also appear in the
image built from the generated/retrieved Dockerfile. Note that
if this measure is 100%, in this context, it means that the
generated/retrieved Dockerfile is able to provide everything
that the original image already provided. Still, it is possible
that it contains additional layers not present in the original
image.

D. Data Availability

We provide a replication package [41] containing the tool to
extract high-level requirements from Dockerfiles, the trained
DL models, along with the datasets and the code for replicating
the baseline techniques and the conducted experiment.

V. EMPIRICAL STUDY RESULTS

In this section, we report the results of our study and, thus,
the answers to our research questions.

A. RQ1: Adherence to the High-Level Specification

In Table IV, we report the results of the comparison with
input HLS fields. First, it can be noticed that IRES is the best-
performing baseline, since it always achieves better or equal
results than IRST . Therefore, from now on, we only discuss
the comparison between T5 and such a baseline in this RQ.
T5 is generally able to better meet the requirement in terms of
OS (+7.6pp), while it achieves slightly worse results in terms
of Package Manager (-1.9pp), Dependencies (-1.2pp), and
Download of External Dependencies (-2.6pp). The last two
are probably the most critical and hard-to-meet requirements

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
er

ce
nt

ag
e

of
 m

at
ch

in
g

la
ye

rs

T5 IRES IRST

Fig. 4: Boxplots of the percentage of matching layers (RQ3).

since they also interact with each other, and we can observe
that both the approaches generally achieve good results. As for
the other requirements, we observe that T5 performs better on
Usage of ENV , Usage of ARG, and Usage of LABEL, while
IRES achieves better results in terms of Usage of EXPOSE,
Usage of CMD, and Usage of ENTRYPOINT . In summary,
we can conclude that (i) there is no clear winner between the
two approaches, and (ii) both the approaches generally return
Dockerfiles that meet most of the requirements.

In summary, T5 and IRES perform very similarly in terms of
adherence to the input requirements: There is no clear winner
as for this aspect.

B. RQ2: Dockerfile Similarity

We report the adjusted boxplots [48] for the normalized
AST edit distance in Fig. 3. The boxplot shows the distribution
of the edit distance between the generated Dockerfile and
the original Dockerfiles for each instance of the test set. The
higher the distance, the lower the similarity. Also in this case,
it seems that there is no clear winner: T5 has higher variance,
thus being able to generate both better and worse Dockerfile
compared to the two baselines. The mean edit distance is 0.55
(σ = 0.19) for T5, 0.53 (σ = 0.18) for IRES , and 0.51 (σ =
0.19) for IRST . This means that the two IR-based baselines
perform slightly better than T5. The difference is significant
according to the Mann–Whitney U tests we performed for
comparing T5 with the IRES and IRST (adjusted p-value
lower than 0.001 for both). The Cliff’s Delta between T5
and IRES is 0.06, and 0.11 between T5 and IRST . Thus,
the difference is negligible in both cases. We took a closer
look at the cases in which the generated/retrieved Dockerfile
was perfectly equal to the original one (i.e., edit distance 0).
We have 93 of such cases for T5, while only 18 and 11 for
IRES and IRST , respectively. In terms of AST size, the perfect
matches are rather small (10.1, σ = 9.4, with a maximum of
58) compared to the average size (133.7, σ = 132.5) for T5,
while it is remarkably higher for the two baselines (39.5, σ =

TABLE IV: Adherence score between the input and the generated HLS reported for each field.

Approach OS Pkg Man. Dep. ENV ARG LABEL EXPOSE CMD ENTRYPOINT Down. Ext. Dep.

T5 0.998 0.981 0.865 0.892 0.987 0.999 0.798 0.743 0.843 0.816
IRES 0.922 1.000 0.877 0.812 0.884 0.872 0.829 0.826 0.851 0.842
IRST 0.880 1.000 0.761 0.518 0.168 0.165 0.373 0.453 0.260 0.448

38.2 for IRES , and 41.8, σ = 44.8 for IRST). Such a result
suggests that T5 works well when small Dockerfile need to
be generated, while it struggles with bigger ones. To confirm
such a conjecture, we computed the correlation (Spearman ρ)
between the AST size of the target Dockerfile for T5, and we
found that it is significant and high (ρ = 0.67), much more than
the two baselines (ρ = -0.12 for IRES , and not significantly
different from 0 for IRST).

In summary, all the approaches returns Dockerfiles quite
different from the target ones. T5 works well with small
Dockerfiles, but not with bigger ones.

C. RQ3: Docker Images Similarity

T5 achieves a build success rate of 34% (170/500 correctly
built images), outperforming the IRES (23%, 166/500 images)
and IRST (32%, 156/500 images). Comparing the digest of the
built images (i.e., hash value) with the source image (i.e., the
one built from the test instance), we obtain remarkably better
results for T5: We have 11.7% of matches (20/170 instances),
while the two baselines have no matching digest for their
images. This result is confirmed also in Fig. 4, which depicts
the distribution of the percentage of matching layers (adjusted
boxplots [48]). The mean percentage of matching layers is
32.4% for T5 (σ = 0.32), 17.5% for IRES (σ = 0.26), and
10.9% for IRST (σ = 0.19). The obtained results complement
the ones presented in RQ2. Not only T5 works better when it
needs to generate small Dockerfiles, but it also works better
than the two baselines on bigger ones, up to a certain point;
after that, it is not able to generate good instructions, thus the
limited layer match, in absolute terms.

In summary, T5 achieves the best results compared to the
two baselines in terms of build success, percentage of perfectly
matching images, and percentage of matching layers.

VI. DISCUSSION

Generating Dockerfiles from high-level specifications is a
challenging task. In this study, we perform a first attempt
to solve this problem using Deep Learning (T5, specifically).
Considering the overall results, there is no clear evidence that
T5 is better than using IR-based techniques, in practice. Given
the lower effort in setting-up a IR-based technique (which is
trivial in the case of IRES , for example), at a superficial level,
we can conclude that, at the moment, this would be the best
option for practitioners.

However, we analyzed the results more in-depth to try to
understand what went wrong, and why T5 does not work well
for this task, despite it is works very well for other coding tasks
[14]. First, we observed that T5 generates Dockerfiles with a
much lower number of tokens compared to the two baseline
approaches (36.80 vs. 135.70 for IRES and 107.10 for IRST).

1 FROM golang:1.9.4-stretch
2
3 RUN apt-get update -y && apt-get upgrade -y
4
5 RUN git clone https://github.com/edenhill/librdkafka.git && \
6 cd librdkafka && \
7 ./configure --prefix /usr && \
8 make && \
9 make install && \

10 cd ..
11
12 WORKDIR /go/src/consumerpg
13 COPY . .
14
15 RUN go-wrapper download
16 RUN go-wrapper install
17
18 CMD ["go-wrapper", "run"]

(a) Target Dockerfile.

1 FROM golang:1.9.4-stretch
2
3 RUN apt-get update && apt-get install -y git
4
5 RUN git clone https://github.com/edenhill/librdkafka.git && cd

librdkafka && ./configure && make && make install
6
7 RUN go get github.com/confluentinc/confluent-kafka-go
8
9 WORKDIR /go/src/github.com/confluentinc/confluent-kafka-go

10
11 CMD ["go", "run", "main.go

(b) Dockerfile generated by T5

Fig. 5: Example of a generated incomplete Dockerfile

This explains why T5 works well for smaller Dockerfiles and
gradually less well for bigger ones (RQ2), and also why T5
achieves a good percentage of matching layers even if the
Dockerfile similarity is low (RQ3).

We manually analyzed some Dockerfiles generated with T5.
We found that, in some instances, the Dockerfiles abruptly
interrupt in the middle of the last instruction. While the
remainder of the generated Dockerfiles is correct, the last
instruction often contains issues. An example is provided in
Fig. 5b, with the target Dockerfile (a) and the one generated
by T5 (b). The prediction is remarkably good, until, in the last
line, T5 stops the generation at a certain point. A pattern we
observed is that interrupted Dockerfiles do not end with the
token we used for indicating the new line (<nl>), while the
ones in the training always end with such a token by design.
We counted a total of 6,786 instances of such a kind (∼60%
of the cases).

If we consider only the instances that terminate with the
newline token, the results of T5 become better than the two
IR baselines in all the aspects we considered: For RQ1, T5
achieves better results than both the baselines for all the
fields, except for Package Manager; for RQ2, the edit distance
becomes significantly lower, i.e., 0.46, compared to 0.51 of the
best baseline for such a sub-sample; For RQ3, we obtain results
in line with the previously presented ones. We tried to address
this issue by replacing the greedy decoding strategy with a
sampling strategy, with different values for the temperature

hyper-parameter of the softmax function. A high temperature
allows to increase the chances of picking tokens with lower
likelihood, while a lower temperature does the exact opposite,
so that, when the temperature is close to 0, such a decoding
strategy behaves like a greedy decoding strategy.

We tested temperature values between 0.7 and 1.0, with
a step of 0.1. We observe that increasing the temperature
allows to reduce the number of incomplete Dockerfiles: With
a temperature of 0.7, we obtain a total of 1,648 incomplete
generations (14.6%) which decrease to 1,283 (11.3%) with a
temperature of 1. The average number of tokens contained
in the Dockerfiles varies between 82 (temperature = 1.0) and
84 (temperature = 0.7), while with greedy decoding we have
37, on average. In the end, however, the Dockerfiles generated
with this strategy achieve generally worse results in terms of (i)
number perfect predictions (∼-28%, with the best temperature,
i.e., 0.8), (ii) number of perfectly matching images (-∼80%,
best temperature = 1.0) and layers (-∼20%, best temperature
= 0.9).

This analysis shows that, while T5 learned how to generate
Dockerfiles, to some extent, it does not have enough knowl-
edge to generate complete Dockerfiles well: It either partially
generates good parts of Dockerfiles or generates complete
less-good Dockerfiles. There are two possible explanations for
this phenomenon, which also represent open problems for this
specific task:

• A larger dataset needs to be built. Addressing this
problem is only apparently easy. We considered in our
study the largest collection of Dockerfiles available in the
literature [16], which includes all the Dockerfiles from
open-source projects produced up to 2020. While such a
dataset can be updated with the last two years of activities
in GitHub, it is unlikely that the size of our dataset would
drastically increase as a result. Indeed, we consider a
single Dockerfile for each unique HLS, i.e., we would
not have new instances for the HLSes already covered.
We rely on comments by the authors to extract some
requirements (specifically, the Dependencies field). Some
Dockerfiles, however, do not have explicit indications of
such requirements and, therefore, we miss them in the
inferred specifications. New and more precise ways of
extracting high-level requirements from Dockerfiles are
needed. Also, a promising direction would consist in the
definition of techniques for data augmentation in this
context, e.g., by blending existing Dockerfiles to provide
uncovered combinations of HLSes.

• A different training stop criterion needs to be defined.
In this study, we used the same procedure previously used
for coding tasks [14], for which the problem of abrupt
interruption in the inference has not been observed. It is
possible that the stop criterion and the metric (BLEU)
used are not the right ones in this context. As for the
latter, it might be worth exploring different distance mea-
sures. While the AST distance is not a viable option for
performance reasons, other metrics that do not consider
the order in the instructions might be more useful.

VII. THREATS TO VALIDITY

Threats to Construct Validity concern the correct opera-
tionalization of the concepts being studied. First, the inference
method we used for extracting requirements from Dockerfiles
works on a series of assumptions (e.g., the presence of
comments) that might not always be completely satisfied in
practice. To mitigate this crucial threat, we carefully tested our
parser and manually checked examples until we were satisfied
with the procedure used to achieve this goal. In total, we
were able to infer 113,442 unique HLSes, with 31,990 unique
combination of dependencies, which gives us confidence on
the fact that our parser works as intended for most of the
Dockerfiles considered. Also, we made sure to exploit all the
instances (also the ones without comments) in the training
procedure (i.e., by using them for pre-training). The choice of
the fields that compose our HLS could exclude requirements
that developers might be interested in specifying (such as
USER). As we explained in Section III, we exclude only the
requirements derived from Dockerfile instructions that do not
appear very often. The best candidate Dockerfile we selected
for each HLS (Section III) might not be representative of the
group of Dockerfiles. In our methodology, we relied on Jaccard
similarity to mitigate this risk.

Threats to Internal Validity concern factors internal to our
study that might have influenced our findings. The percentage
of marching layers (RQ3) might not accurately capture the
structural similarity between two Docker images: If a layer
is different, many or even all the subsequent layers will be
different. However, to the best of our knowledge, the only
alternative is to perform a diff on Docker containers [49],
which, however, only works at the level of installed packages.
Considering the layers allows knowing from which point the
two images started to differ, we believe this is the best choice.

Threats to External Validity concern the generalizability of
our findings. We relied on the largest collection of Dockerfiles
available in the literature [16]. More Dockerfiles might have
been created between 2020 and now. However, we believe
that the considered dataset allows us to provide reasonably
generalizable.

VIII. CONCLUSION

We evaluated the effectiveness of Deep Learning (and,
specifically, T5) for the automatic generation of Dockerfiles.
The results show that, while T5 works very well on small
Dockerfile, it struggles with larger ones. After having deeply
analyzed this phenomenon, we identified two possible issues
that must be addressed before deploying a working DL-based
solution for this task. First, it is necessary to build a larger
dataset, which is not easy, given that we used the largest
collection of open-source Dockerfiles available. Second, it is
necessary to devise a different stopping criterion for fine-
tuning T5 since the one typically used for coding tasks (based
on BLEU-4) likely causes an early stop, which does not allow
the model to properly complete the learning process.

REFERENCES

[1] J. Humble and D. Farley, “Continuous delivery: reliable software
releases through build,” Test, and deployment automation. Pearson
Education, vol. 1, 2010.

[2] StackOveflow, “2022 developer survey,” https://survey.stackoverflow.
co/2022/#section-most-loved-dreaded-and-wanted-other-tools, [Online;
accessed 7-Jul-2022].

[3] D. Reis, B. Piedade, F. F. Correia, J. P. Dias, and A. Aguiar, “Developing
docker and docker-compose specifications: A developers’ survey,” IEEE
Access, vol. 10, pp. 2318–2329, 2021.

[4] “Broken by default: why you should avoid most dockerfile ex-
amples,” https://pythonspeed.com/articles/dockerizing-python-is-hard/,
[Online; accessed 31-Aug-2022].

[5] E. Horton and C. Parnin, “Dockerizeme: Automatic inference of envi-
ronment dependencies for python code snippets,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 328–338.

[6] D. Nüst and M. Hinz, “containerit: Generating dockerfiles for repro-
ducible research with r,” Journal of Open Source Software, vol. 4, no. 40,
p. 1603, 2019.

[7] “starter: Helping you get started with containerized
apps,” https://github.com/cloud66-oss/starter/commit/
3b10a910a5cff8cfe02c628d08ad373018cac888, 2015, [Online; accessed
31-Aug-2022].

[8] “boxing: The zero-configuration dockerfile generator
for ruby,” https://github.com/elct9620/boxing/commit/
4e3a200c2420bf5a5108f3061a27c0c1903cee6e, 2021, [Online; accessed
31-Aug-2022].

[9] “dockerfile-generator: Dockerfile generator for node.js,”
https://github.com/tudvari/dockerfile-generator/commit/
fd4582a7a1bb512b518c9a130e9552378f4f601b, 2018, [Online;
accessed 31-Aug-2022].

[10] H. Ye, J. Zhou, W. Chen, J. Zhu, G. Wu, and J. Wei, “Dockergen: A
knowledge graph based approach for software containerization,” in 2021
IEEE 45th Annual Computers, Software, and Applications Conference
(COMPSAC). IEEE, 2021, pp. 986–991.

[11] “Github copilot: Your ai pair programmer,” https://github.com/features/
copilot, [Online; accessed 31-Aug-2022].

[12] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches in
the wild via neural machine translation,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 28, no. 4, pp. 1–29, 2019.

[13] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Studying the usage of text-to-text
transfer transformer to support code-related tasks,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 336–347.

[14] A. Mastropaolo, N. Cooper, D. N. Palacio, S. Scalabrino, D. Poshy-
vanyk, R. Oliveto, and G. Bavota, “Using transfer learning for code-
related tasks,” IEEE Transactions on Software Engineering, 2022.

[15] C. Watson, N. Cooper, D. N. Palacio, K. Moran, and D. Poshyvanyk,
“A systematic literature review on the use of deep learning in software
engineering research,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 31, no. 2, pp. 1–58, 2022.

[16] K. Eng and A. Hindle, “Revisiting dockerfiles in open source software
over time,” in 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). IEEE, 2021, pp. 449–459.

[17] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, P. J. Liu et al., “Exploring the limits of transfer learning
with a unified text-to-text transformer.” J. Mach. Learn. Res., vol. 21,
no. 140, pp. 1–67, 2020.

[18] “Dockerfile reference,” https://docs.docker.com/engine/reference/
builder/, [Online; accessed 31-Aug-2022].

[19] K. Hanayama, S. Matsumoto, and S. Kusumoto, “Humpback: Code
completion system for dockerfiles based on language models,” in Proc.
Workshop on Natural Language Processing Advancements for Software
Engineering, 2020, pp. 1–4.

[20] Y. Zhang, Y. Zhang, X. Mao, Y. Wu, B. Lin, and S. Wang, “Recom-
mending base image for docker containers based on deep configuration
comprehension,” in 2022 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2022, pp. 449–
453.

[21] “phpdocker.io: Phpdocker.io website and environment (php and
docker based) generator,” https://github.com/phpdocker-io/phpdocker.io/
commit/4ea67367e969c23a7c3cdd42c749b2bd53e7b3c3, 2016, [Online;
accessed 31-Aug-2022].

[22] “Yeoman generator for docker,” https://
github.com/microsoft/generator-docker/commit/
9bb74be96d3d9586ee86b8caec24241528c0bf33, 2015, [Online;
accessed 31-Aug-2022].

[23] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall, “An empirical analysis of the docker container ecosystem on
github,” in 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 2017, pp. 323–333.

[24] “spacy: Industrial-strength natural language processing
(nlp) in python,” https://github.com/explosion/spaCy/commit/
d583626a826c00dfba55f42dc7911d1a4b0b7032, 2017, [Online;
accessed 31-Aug-2022].

[25] “bashlex: Python parser for bash,” https://github.com/idank/bashlex/
commit/58fe9280c431491af0a8c4e5722c638072bab68e, 2014, [Online;
accessed 31-Aug-2022].

[26] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of
code: an infrastructure for mining the universe of open source vcs data,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 143–154.

[27] A. Mastropaolo, E. Aghajani, L. Pascarella, and G. Bavota, “An empir-
ical study on code comment completion,” in 2021 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2021, pp. 159–170.

[28] A. Mastropaolo, L. Pascarella, and G. Bavota, “Using deep learning
to generate complete log statements,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 2279–2290. [Online]. Available: https://doi.org/10.1145/3510003.
3511561

[29] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Using pre-trained models to boost code review
automation,” in 44th IEEE/ACM 44th International Conference
on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May
25-27, 2022, 2022, pp. 2291–2302. [Online]. Available: https:
//doi.org/10.1145/3510003.3510621

[30] L. Li, L. Yang, H. Jiang, J. Yan, T. Luo, Z. Hua, G. Liang, and C. Zuo,
“Auger: Automatically generating review comments with pre-training
models,” arXiv preprint arXiv:2208.08014, 2022.

[31] J. Zhang, S. Panthaplackel, P. Nie, J. J. Li, and M. Gligoric, “Coditt5:
Pretraining for source code and natural language editing,” arXiv preprint
arXiv:2208.05446, 2022.

[32] M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,
D. Poshyvanyk, M. Di Penta, and G. Bavota, “An empirical study on the
usage of transformer models for code completion,” IEEE Transactions
on Software Engineering, 2021.

[33] “T5 pre-trained public checkpoint,” gs://t5-data/pretrained models/
small.

[34] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
arXiv preprint arXiv:1808.06226, 2018.

[35] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[36] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are we?”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, 2018, pp. 373–384.

[37] A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 795–806.

[38] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient
descent learning,” Constructive Approximation, vol. 26, no. 2, pp. 289–
315, 2007.

[39] “Elasticsearch: The official distributed search and analytics engine,”
https://www.elastic.co/elasticsearch/, [Online; accessed 31-Aug-2022].

[40] “Practical bm25 - part 2: The bm25 algo-
rithm and its variables,” https://www.elastic.co/blog/

practical-bm25-part-2-the-bm25-algorithm-and-its-variables, [Online;
accessed 31-Aug-2022].

[41] A. Authors, Replication package, TBD, https://figshare.com/s/
217ac28f442c0be36857.

[42] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: https:
//arxiv.org/abs/1908.10084

[43] J. Henkel, C. Bird, S. K. Lahiri, and T. Reps, “Learning from, under-
standing, and supporting devops artifacts for docker,” in 2020 IEEE/ACM
42nd International Conference on Software Engineering (ICSE). IEEE,
2020, pp. 38–49.

[44] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM journal on computing,
vol. 18, no. 6, pp. 1245–1262, 1989.

[45] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945. [Online]. Available:
http://www.jstor.org/stable/3001968

[46] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
Royal statistical society: series B (Methodological), vol. 57, no. 1, pp.
289–300, 1995.

[47] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological bulletin, vol. 114, no. 3, p. 494, 1993.

[48] M. Hubert and E. Vandervieren, “An adjusted boxplot for skewed
distributions,” Computational statistics & data analysis, vol. 52, no. 12,
pp. 5186–5201, 2008.

[49] “ontainer-diff: Diff your docker containers,” https:
//github.com/GoogleContainerTools/container-diff/commit/
0f743be182c3f38c5343d50676b7ef4048102921, 2017, [Online;
accessed 31-Aug-2022].

