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Summary

Blockchain is a platform of distributed elaboration, which allows users to provide
software for a huge range of next-generation decentralized applications without
involving reliable third parties. Smart Contracts (SCs) are an important component
in Blockchain applications: they are programmatic agreements among two or more
parties that can not be rescinded. Furthermore, SCs have an important characteristic:
they allow users to implement reliable transactions without involving third parties.
However, the advantages of SCs have a price. Like any program, SCs can contain
bugs, some of which may also constitute security threats. Writing correct and secure
SCs can be extremely difficult because, once deployed, they can not be modified.
Although SCs have been recently introduced, a large number of approaches have
been proposed to find bugs and vulnerabilities in SCs. In this paper, we present a sys-
tematic literature review on the approaches for the automated detection of bugs and
vulnerabilities in SCs. We survey 68 papers published between 2015 and 2020, and
we annotate each paper according to our classification framework to provide quanti-
tative results and find possible areas not explored yet. Finally, we identify the open
problems in this research field to provide possible directions to future researchers.
KEYWORDS:
Blockchain, Smart Contracts

1 INTRODUCTION

In 2008, Satoshi Nakamoto1 introduced the formal idea of Blockchain as an infrastructural technology. After, Blockchain marked
a wide range of industrial sectors, i.e., Security, Privacy, Finance, Cloud Computing and the Internet of Things (IoT). Recently,
Smart Contracts (SCs) emerged as a new kind of software programs enabled by the Blockchain. SCs are self-executed contracts in
which users can define their agreements and trust relationships, that are archived in a Blockchain. Smart Contracts can guarantee
integrity of transactions supplying automatized transactions without the supervision of an external financial system (e.g., banks,
tribunals, or notaries). These transactions are traceable, transparent and irreversible.

SCs are software: like normal software, they may contain functional problems (bugs), that may also have security implica-
tions (vulnerabilities). SCs are generally much smaller than typical software system. Differently from other software products,
however, SCs are immutable, i.e., once they are deployed they can never be modified. This makes the early detection of bugs
and vulnerabilities not only desirable, like in other software products, but a necessity. A bug or a vulnerability in an SC can have
a huge impact.

0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor
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The most notorious example is the one that occurred in 2016 in the Ethereum blockchain, i.e., the DAO attack. A vulnerability
in DAO, a popular SC, was exploited to steal 3.6M ETHs (the equivalent of $70 million)2. Thanks to both industrial and academic
research, some techniques and tools are now available for verifying and testing Smart Contracts, to reduce the likelihood that they
contain bugs or vulnerabilities. A recent systematic literature review by Vacca et al.3 surveyed 96 articles to provide an overview
of the software engineering challenges in the development of SCs. However, such a review provides a broad overview of the
problems, without focusing on specific aspects. Liu et al.4, instead, provide a survey focused on a facet of SC verification, i.e.,
the detection of security problems in SCs. To the best of our knowledge, no previous work generically surveys the verification
techniques available for SCs.

In this paper, we fill this gap by conducting a systematic literature review focused on the approaches for automatically
analyzing SCs to detect both bugs and security vulnerabilities. Our review is steered by the following core research questions:

• RQ1: What techniques are used to test Smart Contracts?

• RQ2: What is the scope of the testing activity?

• RQ3: Which technologies are mostly targeted by the available approaches?

• RQ4: How replicable are the approaches and studies conducted?

To answer our research questions, we first define a classification framework to guide our review. We identified four main
dimensions to take into account, i.e., Scope, Approach, Targeted Technologies, and Reproducibility, and the attributes, i.e., the
aspects to analyze and their possible values.

We chose four digital libraries (IEEE, ACM, ScienceDirect, and SpringerLink) to extract the relevant primary studies. We
collected an initial set of 1,800 articles, from which we selected only 68 final primary studies that were relevant for our literature
review, after having applied inclusion and exclusion criteria. We found that the state-of-the-art approaches are mostly based on
static analysis, they mostly target security issues, even if some weakness are still ignored. The large majority of the approaches
we analyzed targets Ethereum-based SCs. Besides, we found that the replicability of the studies is still relatively low both in
terms of the programs implementing the approaches (not shared in about two-thirds of the papers) and in terms of data used for
the validation (not public in about a half of the papers).

The remainder of this paper is structured as follows. Section 2 provides the necessary background on the Blockchain tech-
nology and on SCs. Section 3 explains the adopted methodology, while Section 4 presents the article selection process. Section
6 reports the results achieved according to the classification framework presented in Section 5. The threats that could affect the
validity of our study are discussed in Section 7. Finally, Section 8 summarizes our study.

2 BACKGROUND

In this section we report the precise definition of blockchain and smart contracts. Furthermore, since we do not only focus on
functional problems but also on security vulnerabilities, we also discuss known weaknesses related to smart contracts.

2.1 Blockchain Technology
A Blockchain is built on top of a distributed ledger that uses the mechanism of the consensus and chains of blocks for assuring the
immutability of transactions. The blocks typically contain transactions between pairs of users. To avoid consistency problems
since many users can write at the same time new blocks on the chain, consensus protocols were introduced to regulate such
an operation. For example, Proof of Work is a commonly used consensus protocol that reduces the risk of inconsistencies by
forcing the nodes to solve a cryptographic challenge (inverting a one-way hash)1.

A blockchain can be permissioned (private) or permissionless (public). In a permissioned blockchain only authorized user
can enter the network to read/write the blockchain. These authorizations can be provided by a company or a group of com-
panies. Examples of permissioned blockchains are Everledger5, Ripple6, and Eris. In permissionless blockchain, instead, any
anonymous user can join the network as a node. Among the examples of permissionless blockchains, there are Bitcoin and
Ethereum7,8.

With the first generation of blockchain, it was not possible to create complex distributed applications. Ethereum introduced
the second generation of blockchains, which allow for the deployment of customized Smart Contracts.
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2.2 Smart Contracts
Szabo et al.9 defined the idea of Smart Contract (SC) as a runnable part of blockchains to execute the terms of an agreement
with ease and security between two or more parties without the guarantee of a third party. The necessary condition is the
satisfaction of pre-defined rules. The popularity of Smart Contract begins only with the birth of blockchains. For example, one
person can send currency units to another person, if the first received currency units from a third party. In this case, the transitive
property is satisfied8.

Mainly, Smart Contracts can be divided in two categories:
• smart contract code: the code is created to be executed from the blockchain. It respects two constraints: the programming

language and the features of the blockchain;
• smart legal contract: these type of contracts are related to legal, political and business institutions. they can be seen as a

particular application of smart contract code with a combination of traditional legal language.
An SC is composed of an account balance, a private database, and some executable code. Therefore, SCs have a global state

on the blockchain. An SC can (i) read and write on its private database, (ii) store money on its account balance, (iii) send and
receive messages or money from users/other contracts, or (iv) create new contracts.

Different Blockchain platforms allow to deploy and use SCs. Each platform provides different features and high-level
programming languages for implementing SCs. Example of such Blockchain platforms are:

• Bitcoin1. Bitcoin has a limited computational capability. It is based on a scripting language: i.e., stack-based bytecode
scripting language. The writing of contracts is oriented to a simple logic with multiple signatures to confirm the pay-
ment. Unfortunately, SCs can not have a complex logic because of the limitations related to the scripting language10. For
example, the scripting language does not allow loops11.

• Ethereum11,12. Ethereum is a very popular common platform for developing smart contracts. This public platform allows
developers to define advanced and fully customized SCs thanks to its Turing-complete programming language Solidity. As
in Bitcoin scripting language, the platform supports loops. Also, in Solidity, the code is written in a stack-based bytecode
language and executed in the Ethereum Virtual Machine (EVM).

• NXT13. NXT uses templates to develop built-in smart contracts10. Its programming language shares the same issues like
the one used in Bitcoin (non-Turing-complete programming language).

2.3 Known vulnerabilities in Smart Contracts
Software systems are often affected by security vulnerabilities. The vulnerabilities found in any software system are collected in
the CVE (Common Vulnerabilities and Exposures) list. The NIST (National Institute for Standards and Technology) and MITRE
are responsible for maintaining and updating such a list of known vulnerabilities. MITRE also curates the CWE registry14
(Common Weakness Enumeration), which reports the known possible security problems that may affect a software system.

Like any other software product, SCs can be affected by vulnerabilities as well. The Smart Contract Weakness Classification
Registry (SWC Registry)15 is an implementation of the weakness classification scheme proposed in EIP-1470 for Ethereum
Smart Contracts. The SWC registry matches with the Common Weakness Enumeration (CWE) for terminologies and struc-
ture. Such a registry assigns to each weakness a unique SWC ID in the format SWC-XXX. Each SWC entry has the following
attributes: (i) title, (ii) relationships between the CWE Base or Class type and the CWE variant, (iii) description of the impact,
(iv) remediation, and (v) references to additional information on the weakness.

This registry contains 36 weaknesses related to smart contract systems. We provide in Appendix B a summary for all the
SWC entries available as of February 2021.

3 PLANNING OF THE SYSTEMATIC LITERATURE REVIEW

The goal of this Systematic Literature Review (SLR) is to understand the verification activity performed on Smart Contracts.
We followed the process guidelines proposed by Keele et al.16 to conduct our literature review. As a first step, we planned our
literature review. Specifically, we assessed the necessity of a literature review in this field by searching for other systematic
reviews about the same topic. Then, we defined the research questions and we precisely defined the review procedure.
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3.1 Related Work
Initially, we performed a preliminary search to find other relevant literature reviews in this field. We found a large number of
surveys and literature reviews on Blockchain and Smart Contracts (for example, Casino et al.17, Conoscenti et al.18, and Shen
et al.19). Moreover, several surveys related to smart contract security and verification can be found in literature.

Chen et al.20 performed a literature survey focused on security-related aspects of Ethereum blockchain. In detail, their work
deals with vulnerabilities, attacks, and defenses, giving insights and future research directions. Differently from such a study,
we specifically focus on the verification aspect, and we do not consider only security-related problems, but also functional ones.

Di Angelo et al.21 performed a survey of 27 tools for analyzing Ethereum SCs, focusing on their availability, maturity level,
methods employed, and detection of security issues. As a result, they give recommendations for the development of new tools and
also highlight the tools that they found particularly inspiring. Similarly, Feng et al.22 performed a survey on the SC vulnerabilities
detection tools, and they give insights on the limitations and development challenges for vulnerability detection tools on the
Ethereum blockchain. Our study is complementary to these ones because we consider also approaches not implemented as
publicly available tools. However, we define a dimension of our classification framework dedicated to the availability of the
proposed approaches as tools.

Murray et al.23 performed a survey of formal verification methods for SCs. They found that theorem proving methodology
seems to be the most successful, but more work on formal verification for SCs is needed. Differently from such a survey, we do
not focus on a single technique (i.e., formal verification), but we try to cover all the available ones. Also in this case, we define
a dimension of our classification framework for annotating the type of technique used by each approach.

Xu et al.24 proposed a survey on vulnerability detection tools for Ethereum and EOSIO smart contract bytecode. They con-
clude that tools focused on bytecode are more versatile than those for high-level languages. Also, they report that there is still
work to do to detect all the known types of vulnerabilities, and there is a lack of automated tools for results validation. Differ-
ently from such a study, our review does not specifically focus on a single technology (e.g., Ethereum). Instead, we use the target
technology as a dimension of our classification framework.

Vacca et al.3 reported a Systematic Literature Review about the development issues that can be found while writing SCs. Such
a review has a larger scope compared to ours: While there is partial overlap, we try to focus on specific aspects related to the
automated approaches for the verification (e.g., the type of techniques used) to provide a more in-depth overview of the topic.

Alharby et al.25 provide a Systematic Mapping of the articles in the literature that target SCs. Also in this case, the authors
did not specifically focus on verification approaches for SCs, but on SCs in general. One of the main findings of such a study
is that the majority of scientific papers in the literature about SCs aim at defining methodologies for finding issues in them.
This further justifies the need for a more in-depth analysis of such papers, to better understand the specific characteristics of the
state-of-the-art approaches.

The survey most similar to ours is the one by Liu et al.4. The authors surveyed articles on security verification of SCs, and
they analyze a total of 53 research papers. The main difference is that they specifically focus on SC securty and they also include
generic correctness verification techniques. Also, for the security-related approaches, we define a mapping with a reference
weakness enumeration (SWC).

3.2 Research Questions
The Research Questions (RQs) that guided our Systematic Literature Review are the following:

• RQ1: What methodologies are used to verify Smart Contracts? With this RQ we aim to understand if there are unexplored
methodologies and issues to verify Smart Contracts. In this way, researchers can decide to experiment with them.

• RQ2: Which technologies are targeted by the available approaches? With this research question, we want to classify
approaches based on programming language and on type of Blockchain to find areas not sufficiently treated yet. This will
allow researchers to decide what programming languages and Blockchains they should target.

• RQ3: How reproducible are the approaches and studies conducted? With this final research question, we aim to learn to
what extent the approaches and the results obtained in the studies conducted can be reproduced both in terms of data (i.e.,
are the datasets used in the studies available?) and source code (i.e., are the prototype tools implementing the approaches
available?). The results will guide researchers to perform new studies using existing data and tools.
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3.3 Review Procedure
To conduct our literature review, we defined a formal review process (Figure 1). As a first step, we selected the relevant primary
studies. To do this, we first performed a pilot study: this allowed us to both (i) determine an appropriate search query, and (ii)
define the inclusion and exclusion criteria for the articles. Then, after selecting four digital libraries, we used the defined query to
extract the first set of primary studies. Then, we used a two-stage filtering procedure: we first only focused on title and abstract,
and later we carefully read the whole papers to check if they met our inclusion/exclusion criteria. We report the results of such
a step in Section 4.

Google Scholar

Execute
Preliminary Study
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Search String

Select
Digital Libraries

Collect
Initial Primary Studies

(1800)

ACM IEEESpringer ScienceDirect

Select 
Intermediate Primary Studies

About Title and Abstract 
(125)
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About All Text
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SELECTION
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CLASSIFICATION
FRAMEWORK
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Attributes of the
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INTERPRETATION

Interpret 
results
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FIGURE 1 Systematic survey process

Then, we defined a classification framework: we based on the four research question to determine the dimensions of the
framework (i.e., which macro-aspects we wanted to take into account), and, for each of them, we defined specific attributes to
determine for each paper. We explain such a procedure in Section 5. We used the classification framework to characterize each
paper and to extract relevant information that allowed us to answer our research questions.

4 ARTICLE SELECTION

As the first step in our Systematic Literature Review, we selected the primary studies to consider in it. To do this, we first
determined the query that we could use to gather such a first set of possibly relevant studies. We tried to minimize the risk of (i)
excluding relevant studies, and (ii) including irrelevant studies. Then, we used that query on several digital libraries to collect
the first set of primary studies. We later refined the list of retrieved articles by using inclusion and exclusion criteria to select
the final set of articles.

4.1 Step 0: Query Definition
We first considered a single digital library, i.e., Google Scholar, and we used a preliminary query, i.e., “testing of smart contract”.
We chose Google Scholar at this phase since it indexes papers from specific digital libraries. As a result, we obtained numerous
studies irrelevant for our SLR, including many studies regarding contextual applications of such technologies (e.g., smart cities).
This would have made the manual analysis infeasible. To narrow the search to our goal, we progressively refined such a query,
using the results obtained as feedback. More specifically, we extracted from the relevant papers retrieved the key research terms
that would allow us to precisely select that specific category of articles.
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In this phase, we found that the term test and the phrase "smart contract" appeared in relevant articles. Using a query that
combines both such parts, we still found a significant number of studies not relevant for our SLR. For example, the study by Yu et
al.26 proposes a parallelization technique for transitions, i.e., not a technique for detecting problems in Smart Contracts. For this
reason, we identified research terms that allowed us to further filter out such a kind of papers. We used terms commonly reflecting
problems in terms of functional and non-functional (security-related) aspects, i.e., defect, bug, fault, and vulnerability.
To cope with corner cases, we used wildcards at the end of each term, to ensure that all the declensions of the words were
considered, regardless of how the search engine was implemented. For the only phrase we included, i.e., "smart contract",
we needed to specify also its plural version ("smart contracts") since wildcards are generally not allowed in phrase queries.

As a result, we defined the following query:
test* AND ("smart contract" OR "smart contracts")
AND (defect* OR bug* OR vulnerabilit* OR fault*)

4.2 Step 1: Initial Collection of Primary Studies
We choose an appropriate series of databases in order to increase the probability of finding highly relevant studies. We use the
following digital libraries:

1. ACM Digital Library27;

2. IEEE eXplore28;

3. ScienceDirect29;

4. SpringerLink30;

For each digital library used, we executed the query reported in Section 4.1 and collected all articles published. We slightly
adapted the query to each search engine since some of them required the use of a different syntax.

We obtained the following results: (i) 119 papers from IEEE; (ii) 245 papers from ACM; (iii) 534 papers from ScienceDirect;
(iv) 902 papers from SpringerLink. In Figure 2 we show the distribution of primary studies found in the first step.

IEEE eXplore ACM ScienceDirect SpringerLink

Number of studies found in digital libraries

0
20

0
40

0
60

0
80

0
10

00

FIGURE 2 Distribution of primary studies found in the digital libraries
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4.3 Step 2: Study Selection
While the query we defined allowed us to considerably reduce the noise in the initial set of primary studies, some of them still
were not entirely relevant. To exclude such studies, we manually analyzed the articles selected in the first step. Our selection
was guided by the following inclusion and exclusion criteria:

• Include:
– IC1: Papers defining an approach for detecting functional or security-related problems in SCs;
– IC2: Papers written in English;
– IC3: Peer-reviewed papers (i.e., we exclude gray-literature).

• Exclude:
– EC1: Surveys, literature reviews, books, book chapters, and magazine articles;
– EC2: Papers which do not provide a validation;
– EC3: Conference papers for which a journal extension was later published;

To apply such criteria, we performed two steps. First, we only analyzed the title and abstract of the papers: such a procedure
allowed us to quickly exclude the papers that were clearly not relevant. Specifically, we could check the criteria IC2, IC3, EC1,
and, partially, IC1. Then, to check the remaining criteria (i.e., IC1 and EC2), we read the complete remaining papers.

Given the 1,800 articles retrieved using the query previously defined on the digital libraries, we (i) selected only 125 studies
after reading the title and abstract, and we (ii) selected 68 ones after carefully reading them.

4.4 Editorial and Temporal Collocation
We provide below the editorial and temporal collocation of the primary studies selected for our SLR. We report in Table 1 the
conferences and the journals in which the primary studies we selected appear, ordered by frequency.

The majority of the studies have been published at conferences (61 out of 68): indeed, 68 articles have been presented in 42
different conferences and only in 6 different journals. The most praised conferences (i.e., 4 occurrences, reported in bold) in
which are published studies on testing of Smart Contracts are: (i) International Conference on Software Engineering (ICSE) and
International Conference on Automated Software Engineering (ASE). Instead, regarding journals, we found no relevant result
given that we collect only 6 occurrences, where the assignment is one journal to one paper.

We report in Figure 3 the temporal collocation of the selected articles (i.e., the number of articles published in each year,
from 2015 to 2020). It is interesting to notice the step increase of the number of publications from 2018. Also, considering that
we analyze only the first five months of 2020 it is interesting to see that there are already 10 articles in 2020 on the testing of
Smart Contracts.

5 CLASSIFICATION FRAMEWORK

To answer our research questions outlined in Section 3, we define a classification framework for the primary studies identified
in Section 4. After having identified the dimensions, the attributes, and the values for our classification framework, we labelled
each article according to it. While labelling, we annotated additional details for each non-boolean attribute that we could use to
further improve the details of the classification, which could result in the introduction of new values for the attributes. We show
in Figure 4 the final version of the classification framework, with dimensions (dark grey rectangles), attributes (white rectangles
with solid borders), and values (rectangles with dashed borders), both the ones determined a-priori (white fill) and a-posteriori
(light-blue fill). We first introduce the initial dimensions, attributes, and values of the framework (defined before starting the
labeling process). Then, we describe the labeling process and the refinement of the classification framework.

5.1 Identification of Dimensions, Attributes, and Values
We identified four dimensions, one for each research question: Approach (RQ1), Scope (RQ2), Targeted Technologies (RQ3),
and Reproducibility (RQ4). For each dimension, we defined the attributes that we were interested in analyzing, based on our
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TABLE 1 Editorial collocation of selected articles.
Type Name # selected articles

Conference

International Conference on Automated Software Engineering (ASE) 4
International Conference on Software Engineering (ICSE) 4
Conference on Computer and Communications Security (CCS) 3
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA) 3
International Conference on. Software Analysis, Evolution and Reengineering (SANER) 3
Annual Computer Security Applications Conference (ACSAC) 2
Asia-Pacific Software Engineering Conference (APSEC) 2
International Workshop on Data Privacy Management (DPM) 2
Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE) 2
Symposium On Applied Computing (SAC) 2
International Symposium on Software Testing and Analysis (ISSTA) 2
International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB) 2
Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 1
Annual International Conference on Computer Science and Software Engineering (CASCON) 1
Annual International Conference on Privacy, Security, and Trust (PST) 1
CCF China Blockchain Conference (CBCC) 1
International Conference on Advanced Information Networking and Applications (AINA) 1
International Conference on Blockchain (BLOCKCHAIN) 1
International Conference on Certified Programs and Proofs (CPP) 1
International Conference on Communication and Signal Processing (ICCSP) 1
International Conference on Financial Cryptography and Data Security (FC) 1
International Conference on Formal Engineering Methods (ICFEM) 1
International Conference on Fundamental Approaches to Software Engineering (FASE) 1
International Conference on Future Data and Security Engineering (FDSE) 1
International Conference on Information Security Practice and Experience (ISPEC) 1
International Conference on Internet of Things: Systems, Management and Security (IOTSMS) 1
International Conference on Network and System Security (NSS) 1
International Conference on Principles of Security and Trust (POST) 1
International Conference on Program Comprehension (ICPC) 1
International Conference on Runtime Verification (RV) 1
International Conference on Smart Computing and Communication (SMARTCOM) 1
International Conference on Software and Computer Applications (ICSCA) 1
International Conference on Computational Science (ICCS) 1
International Symposium on Formal Methods (FM) 1
International Symposium on Leveraging Applications of Formal Methods (ISoLA) 1
Network and Distributed Systems Security (NDSS) 1
Symposium on Principles of Programming Languages (POPL) 1
The Computer Security Foundations Symposium (CSF) 1
The International Symposium on Software Reliability Engineering (ISSRE) 1
Security Symposium (USENIX) 1
Workshop on Programming Languages and Analysis for Security (PLAS) 1
World Conference on Information Systems and Technologies (WORLDCIST) 1

Total publications 61

Journal

Journal Programming and Computer Software 1
Programming Languages with Applications to Biology and Security 1
Journal Blockchain Technology 1
Journal Integrating Research and Practice in Software Engineering 1
Journal of Network and Computer Applications 1
IEEE Access 1

Total publications 6

research questions. Finally, for each attribute, we determined the possible values based on the possible values we expected to
observe according to both the literature and our knowledge on the topic.

RQ1: Approach. With the Approach dimension we aim at characterizing the approaches in terms of the basic techniques
used for detecting issues in SCs. In addition, we want to characterize the approaches in terms of their scope, i.e., in which
contexts they can be used. The first obvious attribute we wanted to analyze was the base methodology used in the approaches
defined to detect issues in SCs. Both static analysis (e.g., symbolic execution) and dynamic analysis (e.g., fuzzing) are typically
used for detecting defects in traditional software systems. Subsequently, we want to understand the properties verified by the
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approach. Since our review regards both normal bugs and vulnerabilities, we predetermined two possible values for such an
attribute: functional for the former, and security for the latter. We also wanted to find specific issues with the related scopes
that the approach could detect (Issues). While no specific taxonomy exists for SCs bugs, SWC provides a comprehensive list
of possible weaknesses (see Section B) with their associated scopes. Therefore, the possible values we could assign to such an
attribute is the complete list of scopes associated to each weakness, plus a new scope, i.e., Interaction beetween Smart Contracts,
dedicated to those vulnerabilities caused by an interaction between different smart contracts. To answer RQ1, we also wanted
to understand how many approaches used only a methodology and how many, instead, mixed two or more methodologies (e.g.,
machine learning and dynamic analysis). Therefore, we also introduced the Mixed boolean attribute.

RQ2: Targeted Technologies. With the Targeted Technologies dimension we aim at characterizing the approaches in terms
of the technologies they were designed to work on. First, we wanted to understand the Blockchain targeted by the approach.
To define the values for such an attribute, we considered the two most popular blockchain technologies supporting SCs at the
time of the study, i.e., Ethereum and Bitcoin. Also, in this case, we included Others as a possible value to include approaches
defined for other blockchains. Each blockchain may support several high- or low-level programming languages to define SCs:
we used the attribute Programming Language to identify the specific programming languages targeted by the approaches. To
define the values, we took into account all the programming languages used to write smart contracts for the two blockchains
we previously considered for the Blockchain attribute, i.e., Solidity, YUL/YUL+, EVM Bytecode, Vyper (for Ethereum), and
Bitcoin Scripting Language (for Bitcoin). Finally, as previously done for the Approach dimension, we checked if the approaches
were able to target more than a programming language through the Multilanguage boolean attribute.

RQ3: Reproducibility. With the fourth and final dimension, Reproducibility, we wanted to understand to what extent the
approaches and the experiments presented in the primary studies we analyze are reproducible. We defined two boolean attributes:
(i) Public Dataset, which allowed us to determine if the authors used a publicly accessible dataset of smart contracts for validating
their approaches (including datasets released by the authors in the article), and (ii) Public Tool or Framework, for checking if the
authors publicly released at least a prototype implementing their approach to allow future researchers to use it for comparison.

5.2 Article Labeling and Framework Refinement
Three of the authors autonomously read and classified all the 68 primary studies identified by assigning one or more values
for each attribute provided by the framework. The authors discussed the cases for which there was disagreement also with a
fourth author to find consensus. While for most of the attributes we found that the pre-determined values were good enough to
characterize the papers, we observed that these were insufficient for the following attributes:

• Approach/Methodology: some specific techniques recurred throughout several papers. For example, we found that Fuzz
Testing was explicitly mentioned in seven articles. Therefore, we added to the framework the second level of possible
values, i.e., specific values for the three main values we initially determined. As for Static Analysis, we added Formal
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FIGURE 4 The final version of the classification framework. The grey rectangles indicate the dimensions; the white ones with
solid borders indicate the attributes. The rectangles with dashed borders indicate the values, with white fill indicating a-priori
values, and the light-blue fill indicating a-posteriori values. Each a-posteriori value in “Security” has their own sub-values,
available in Table B2, Table B3, and Table B4.
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Methods, Symbolic Execution, and Taint Analysis; we added Test Case Generation and Fuzz Testing as sub-values of
Dynamic Analysis; finally, we added a single sub-value for Others, i.e., Machine Learning.

• Approach/Issues: We found that research articles were focused on two types of issues: functional and security. As for
security, we add the second level of possible values, i.e., the scope reached by each single SWC. Thus, we use the following
values: Access Control, Availability, Confidentiality, Integrity, Interaction between Smart Contracts, Non-Repudiation,
Other. We determined such scopes by analyzing the characteristics of the SWCs targeted in the research papers.

• Reproducibility/Public Dataset: we found that the papers that used publicly available dataset used five sources: GitHub,
Etherscan (an analytics platform for the Ethereum blockchain), Blockchain (i.e., they considered a subset of SCs deployed
on a specific blockchain), and Paper (i.e., they directly reported on the paper the SCs used for evaluation). Other papers
reported a link to another kind of resource, e.g., they self-hosted the dataset.
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• Reproducibility/Public Tool or Framework: the authors that publicly released their approaches as tools or frameworks
typically used GitHub for sharing the source code of their program; other papers reported a link to the program hosted
through a different service (e.g., private web page).

After this refinement of the taxonomy, two of the authors independently double-checked all the papers for such attributes to
possibly label other papers according to this modified version of the framework. It is worth noting that, for the attributes that
provide more levels of values (i.e., Approach/Methodology, Approach/Issues and the two attributes of Reproducibility) we kept
the more generic value we used in the first classification besides the specific ones we set in the second pass. For such attributes,
we only kept the more generic values for the articles that used the specific non-recurring values we added while refining the
classification framework.

6 ANALYSIS OF THE RESULTS

In this section, we answer the research questions and summarize the literature on the V&V of Smart Contracts. We report
in-depth results containing the full characterization of all 68 articles in Appendix A.

6.1 RQ1: What methodologies are used to verify Smart Contracts?
We analyze the results obtained for the Approaches dimension of the classification framework to characterize the methodologies
used to face the challenges deriving from verificating the correctness of Smart Contracts. In addition, we analyze what are the
problems faced in all studies targeting functional or security issues. Figure 5 shows the distribution of the methodologies used
for each approach we analyzed. In Table 2 we report for each approach its respective reference. It can be noticed that Static
Analysis is the most commonly used method and, more specifically, Formal Methods and Symbolic Execution are very common.

Static Analysis

Symbolic
Execution

Taint
Analysis

Formal
Methods

23

52

10 4

Dynamic Analysis

Fuzz TestingTest Case
Generation

2

16

7

Others

Machine
Learning

6

15

FIGURE 5 Distribution of the verification approaches for each defined classification category.

A lower number of approaches (16) use Dynamic Analysis techniques. In this case, Fuzz Testing is preferred over Test Case
Generation. The former indicates the execution of smart contracts by using random and possibly unexpected values. In the
context of Smart Contracts, a fuzzing approach identifies an issue when the violation of the predefined test oracles is detected,
usually checking the result of transactions, log messages or blockchain accounts (i.e., wallet amount). The latter indicates the
generation of test input data following the SC specification. Machine Learning is still not very common (6 articles), but it is
gaining popularity: all the articles that used ML-based approaches were published after 2019, with the single exception of Liu
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TABLE 2 Reference of verification approaches.

Approach Reference

Static Analysis Whichmann et al.31
Formal Methods Gerhart et al.32
Symbolic Execution King et al.33
Taint Analysis Boxler et al.34

Dynamic Analysis Ball35
Test Case Generation Myers36
Fuzz Testing Gallagher et al.37

Others/Machine learning Mitchell38

et al.39. We found that 79.1% of selected studies use only one methodology. Instead, 14 (20.9%) research articles use more than
a methodology: 12 of them use only two methodologies, and 2 of them use a combination of three methodologies.

Static Analysis. Most of the approaches use formal methods, symbolic execution, or taint analysis. For example, Tsankov et
al.40 proposed SECURIFY, an approach that uses program analysis to prove the safety of Ethereum Smart Contract behaviour,
with respect to a given property. SECURIFY performs a two-step analysis, where at first it extracts semantic information from
the contract’s dependency graph, then it checks compliance and security patterns over such semantic information. One of these
studies is the one by Mossberg et al.41 proposed Manticore, a symbolic execution framework for analyzing binaries and Smart
Contract, exploring the state space of the targeted Smart Contracts. Gao et al.42 proposed EasyFlow, a taint analysis based
technique to detect overflow vulnerabilities at the EVM level. Their approach can detect the overflow level of the targeted
Smart Contracts (i.e., safe, potential overflow, manifested overflow, etc.) but also it can generate transactions to trigger potential
overflows. Moreover, we found 15 out of the 52 research papers using static analysis approaches that did not match any of such
categories of techniques. For example, the approach proposed by Lai et al.43 detects integer overflow in SCs by using a set
of custom XPath patterns defined on the basis of 11 different scenarios of integer overflow. Another example is the approach
proposed by Grech et al.44, which can find gas-focused vulnerabilities in Ethereum Smart Contracts. Their approach performs a
static analysis at EVM bytecode level, decompiling and then reconstructing the program’s higher-level semantics using abstract
interpretation techniques and program analysis. Thus, 52 research papers are the sum of 15 research studies that did match any
of such categories of techniques, 23 research studies that match with formal methods, 10 research studies match with symbolic
execution and 4 research studies match with taint analysis.

Dynamic Analysis. In this category, we have approaches based on Fuzz Testing and Test Case Generation. These tools
simulate the execution of a large number of transactions to find vulnerabilities in contracts. For example, ReGuard45 uses fuzzing
to automatically detect reentrancy bugs in Ethereum Smart Contracts. This is achieved by generating and executing random
diverse transactions. Zhang et al.46 proposed EthPloit, a test case generation tool focused on security exploits generation based
on fuzzing, combined with static taint analysis. Specifically, EthPloit starts with static analysis to extract the ABI from byte code.
Based on this, there is a test case generation phase, where also fuzzing is applied to optimize the generated test case. In the next
steps, the test cases are selected (i.e., successful exploits) and the reward function for the test case generator is adjusted. Besides
such specific techniques, we found that 7 articles out of 16 define approaches based on Dynamic Analysis used techniques
different from Test Case Generation and Fuzz Testing. For example, Chen et al.47 proposed an approach to dynamically adjusts
the gas costs of EVM operations according to the number of executions to avoid DoS attacks: indeed, such an approach aims at
avoiding that failing to properly set the gas costs on Ethereum allows attackers to launch DoS attacks. Moreover, Nguyen et al.48
proposed some behaviour-based methods to detect attack vectors on Ethereum Smart Contracts, such as vulnerabilities in the
Solidity level. They implemented and then tested the ABBE tool by using a test suite composed of Smart Contracts containing
vulnerabilities. As a result, their tool not only detects known attacks but also zero-day attack patterns.

Others. Most of the articles marked as Others (6 out of 15) use approaches mainly based on machine learning. For example,
Momeni et al.49 proposed a machine learning model that detects security vulnerabilities patterns in Smart Contracts. They used
two static code analyzers to build a training dataset composed of 1,000 Smart Contracts verified on the Ethereum platform.
Then, they trained an array of machine learning models such as Decision Trees, Random Forest, Neural Network, and SVM for
different security vulnerabilities. As a result, their approach is able to find 16 different vulnerabilities with an average accuracy
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of 95%. On the other hand, some research paper belonging to Others category introduce techniques for mutation testing, i.e.,
for measuring the quality of the test suite of the SCs. While such approaches do not directly check if a given SC contains bugs
or vulnerabilities, they indirectly achieve this goal by finding blind spots for the test suite. Improving the test suite, in turn,
possibly allows finding more issues in the SCs. For example, Chapman et al.50 proposed Deviant, a mutation testing tool for
Solidity. Deviant generates and runs mutants given a Solidity project to evaluate the effectiveness of the test suite according
to the Solidity fault model. Li et al.51 introduce MuSC, a mutation testing tool for Ethereum Smart Contracts implementing
a set of novel mutation operators for the Solidity programming language. Another example of an approach labelled as Other
is the work by Wang et al.52. The article introduces a high-availability and unified input Filter-based Secure Framework for
Ethereum smart Contract (FSFC), designed to dynamically identify and discard bad inputs before they getting processed. In this
way, the availability of the deployed smart contracts is not impacted avoiding suspending the contract service. Besides, Wang
et al.53 proposed a technique focused on transaction-related vulnerabilities. Their approach, VULTRON, can detect irregular
transactions due to various types of adversarial exploits, building an oracle that can effectively distinguish transactions that are
the results of malicious exploits from normal ones.

Mixed approaches. 14 out of 68 articles presented approaches that combine two or three categories of techniques to detect
issues. The approach presented by He et al.54 is a clear example of mixed approach: it combines Symbolic Execution (i.e., Static
Analysis), Fuzz Testing, and Machine Learning. Their approach combines a neural network with symbolic execution to define
a technique able to automatically define fuzzing policies. Through such policies, a fuzzer generates inputs for unseen Ethereum
SCs.

Issues. We found that 43 studies out of 68 studies (64%) are focused on security, while only 24 studies (36%) target functional
issues. Such a result was expected since vulnerabilities in SCs may have a relevant economic impact. The most analyzed scope is
Availability, which has been studied in 37 research studies (55.2%) and it is associated to 12 SWCs (i.e., SWC-128). In addition,
5 studies have been studied this scope without consider other scopes55,56,57,47,58. Another relevant scope is Confidentiality.
Indeed, this scope has been studied in 30 papers (44.8%) and it is associated to 12 SWCs. Issues related to Access Control were
considered in 20 research studies (i.e., 29.8% of the total). The categories Integrity and Non-Repudiation are covered only by one
article each (i.e., the one by Kolluri et al.59 and the one by Liu et al.45, respectively). Finally, as for the scope we introduced, i.e.,
Interaction between Smart Contracts, we found that it is quite widespread: 17 research studies (25.4%) targeted such an issue.
We report in Figure 6 the distribution of the specific security vulnerabilities in research papers. The most studied weaknesses,
i.e., SWC-101 (Integer Overflow and Underflow) and SWC-107 (Reentrancy), have been addressed by the approaches defined
in 19 articles. Instead, we found that 8 vulnerabilities located in the SWC Registry have not been explored by any study: such
weaknesses are SWC-103 (Floating Pragma), SWC-117 (Signature Malleability), SWC-118 (Incorrect Constructor Name),
SWC-121 (Missing Protection against Signature Replay Attacks), SWC-122 (Lack of Proper Signature Verification), SWC-127
(Arbitrary Jump with Function Type Variable), SWC-130 (Right-To-Left-Override control character (U+202E)), and SWC-131
(Presence of unused variables). This shows a gap in the literature concerning a relatively large portion of known vulnerabilities.

Vulnerabilities Missing from SWC. Reading and analyzing the research articles involved in the study, we found that some
of the articles mention and address vulnerabilities missing from the SWC registry. Specifically, we found three vulnerabilities
of such a kind. For convenience, we assign an unofficial incremental SWC-ID (i.e. SWC-Xi) to such new vulnerabilities. The
first vulnerability we found is External call to untrusted contract, identified as SWC-X1. This vulnerability was studied by
Momeni et al.49. Such a weakness manifests when a SC delegates some of its functionalities to an external contract that is
inaccessible. Indeed, the implementation of such an external SC can have hidden malicious behaviours. While we found no
SWC weakness related to such a vulnerability, we found other traces of such a weakness, beyond the previously mentioned
article. A repository containing a catalogue of Smart Contracts formally verified by Runtime Verification and/or collaborators
provides a comprehensive list of vulnerabilities, alternative to SWC, which includes External Contract Referencing60, which
is conceptually related to our SWC-X1. Another vulnerability we found is Byte-manipulation, identified as SWC-X2. Park et
al.61 proposed an approach for fixing such a vulnerability. On the Decentralized Application Security Project (DASP) Top 10,
this vulnerability could be classified in the family of DoS attacks62 . This vulnerability is due to the fact that the byte-wise
splitting and merging operations cannot avoid performance penalties: for example, a large formula should be executed for every
load into memory. The byte-wise splitting operation is used to operate on the 32-byte word to split it in 32 chunks of bytes (i.e.,
returned from the 32-byte word). In this way, chunks can be stored in the local storage, which is a byte-addressable memory
and can be represented as an array of bytes. Instead, the byte-wise merging operation is used to operate on 32 chunks of bytes
to transform them into 32-byte words and store them in the local stack or in the global storage. These two types of memory are
word-addressable, i.e., they are based on an array of 32-byte words. The last vulnerability we found is the Short Address Attack,
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FIGURE 6 Number of papers (x-axis) targeting security vulnerabilities (y-axis).

identified as SWC-X3. Ashouri et al.63 and Liao et al.64 introduced approaches for detecting such a weakness in SCs. SWC-X3
is discussed in the Decentralized Application Security Project (DASP) Top 10 of 201865 and thus can be a good candidate to
become a new element of the SWC Registry. Some approaches (e.g., the one proposed by Honig et al.66) base their approach
on such a registry. Therefore, the fact that such vulnerabilities are missing from the SWC registry is a relevant issue.

Approaches Targeting Specific Vulnerabilities. There are two main methodologies used for detecting vulnerabilities in
Smart Contracts: the majority of the approaches focus on revealing the presence of vulnerabilities, thus allowing developers to
remove them, or on proving their absence (e.g., KEVM57, Securify40, Zeus67); other approaches in this research area are able
to automatically build exploits (e.g., MAIAN68, Manticore41 and teEther69). Other approaches use alternative methodologies.
ContractLarva70 checks the execution of Smart Contracts, inserting some code inside the already written code to verify their
behaviour. About a half of the approaches start the analysis with the bytecode of contracts. This is due to the lack of formal
semantic in Solidity, but also from the changes in the behaviour according to the different versions of the compiler. For what
concerns the used methods to test these Smart Contracts, the biggest part of the approaches used until now applies largely
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dynamic and static analysis, e.g., SolAnalyser71. OYENTE 72 takes into account three particular vulnerabilities, i.e., transaction-
ordering dependent (TOD), Timestamp, and Reentrancy. Reentrancy vulnerability is one of the most dangerous and is the
one that caused several attacks with the loss of various millions of dollars. Other approaches, like Manticore41, SECURIFY 40,
SmartCheck73, try to catch a larger set of vulnerabilities. For what concerns formal verification, KEVM57 is clearly the favourite
for its maturity, with the inconvenience that its use requires expertise in the bytecode of EVM. SECURIFY 40 is the most advanced
approach able to check formal guaranties. Osiris74 is specialized in integer bugs, while MAIAN68 analyzes three specific kinds
of vulnerability, e.g., the self-destruction of Smart Contracts. MAIAN is composed of two major components: symbolic analysis
and concrete validation. In detail, MAIAN performs the symbolic analysis on the smart execution traces of smart contracts to
find out trace vulnerabilities. Moreover, a concrete validation runtime is called to reduce the number of false positives. Concrete
validation is used to execute the contract with the concrete values of the transactions returned by the symbolic analysis to verify
if the property is verified in the concrete execution. If the concrete execution fails to return a violation of the trace property, the
contract is marked as false positive, and true positive, otherwise.

Approaches Targeting Generic Vulnerabilities. It is interesting that, in two particular studies, the authors deal with secu-
rity aspects without delving into specific vulnerabilities. For example, Liu et al.39 defined a semantic-aware security auditing
technique. This technique can be called S-GRAM for Ethereum because authors combine an N-gram language model and
a lightweight static semantic labelling. In this way, potential vulnerabilities can be predicted by detecting irregular token
sequences. Their results show that the S-GRAM is able to identify security issues. Zupan et al.75 proposed a method and a
prototype tool to generate secure Smart Contracts based on Petri Nets. Petri Nets is a visualizer of models for processes and
workflows. The goal of their study is to create a secure smart contract template for easy deployment of a supported blockchain
platform. Their main contribution is the creation of Smart Contracts via Petri Nets so that developers minimize logical errors.

Summary of RQ1. Most of the approaches for verifying Smart Contracts are based on static analysis and, specifi-
cally, Formal Methods and Symbolic execution are the most frequently used techniques. Machine learning is used
in only 6 articles, but all of them are recent, suggesting a growing interest in the field. Most of the articles we ana-
lyzed aim at verifying the security of SCs. Both research and practice in this field are not mature yet: we found that
8 weaknesses from the SWC registry are not addressed by any state-of-the-art approach, while 3 vulnerabilities
addressed by some approaches are not included in SWC.

6.2 RQ2: Which technologies are targeted by the available approaches?
We answer this research question by analyzing the labelling results related to the Targeted Technologies dimension of our
classification framework. We analyze all selected research papers to see what is the type of Blockchain used in every single study.
We find that almost all the studies (62, i.e., 92.5%) target SCs deployed on the Ethereum Blockchain. This is not surprising:
previous studies (e.g., Alharby et al.25) already reported that Ethereum is the most commonly used platform for deploying Smart
Contracts. Therefore, it is natural that most of the approaches from the literature are meant to work on such a platform. We found
only 4 research articles (5.9%) that target the Bitcoin Blockchain. Finally, we found only 3 articles (i.e., 4.5%) that target different
types of blockchain. Specifically, Wang et al.76 define an approach for verifying SCs deployed on the Azure Blockchain, while
Sergey et al.55 target Zilliqa. Finally, ZEUS 67 targets both the Hyperledger Fabric and the Ethereum Blockchain. Figure 7 shows
the distribution of Blockchain types.

We report in Figure 8 the labeling results for the targeted programming language. Solidity (47 articles, 70.1%) is the most
targeted programming languages (e.g., by SolAnalyser71, Grossman et al.77, and Zakrzewsky et al.78). Again, this is not sur-
prising, since Solidity is the most widely used high-level programming language for writing Smart Contracts for Ethereum. In
addition, we found particular attention in the literature to EVM Bytecode, with 23 (34.3%,) involved articles, e.g., Bai et al.79,
Ma et al.80 and Zhang et al.81. EVM Bytecode is the low-level language in which Ethereum SCs must be compiled to be exe-
cuted; therefore, it is natural that some approaches specifically target such a language instead of other high-level languages.
We found 6 studies (8.9%) that use both Solidity and EVM Bytecode82,45,72,55,40,53. Other programming languages are rarely
targeted by the state-of-the-art approaches: 3 studies (i.e., 4.5%) targeted Vyper83,84,44, but they also target Solidity as well; 3
studies target the Bitcoin Scripting Language85,86,87. Only the approach proposed by Jiao et al.84 uses a programming language
different from the ones provided in our framework. Such a programming language is Bamboo88, a language less popular than
the alternatives for Ethereum SCs. Such a language is not mentioned in the Ethereum official documentation. The large majority
of the papers we analyzed (58, i.e., 86.6%) target a single programming language, while 9 of them (13.4%) target more than a
programming language.
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FIGURE 8 Distribution of the use of programming languages.

To provide a comprehensive view of the relationship between vulnerabilities and programming languages, we report the
categorization provided through our classification framework in terms of such aspects in Table 3.

Summary of RQ2. The large majority of articles target SCs developed for Ethereum and, more specifically, the
ones written in Solidity. There is a need for new approaches for other commonly used Blockchains, such as Bitcoin
and Hyperledger Fabric.
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TABLE 3 Coverage with respect to the vulnerabilities observed and the different programming languages.
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Akca et al.71 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Albert et al.82 ✓ ✓ ✓

Ashouri et al.63 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Azzopardi et al.70 ✓ ✓

Bhargavan et al.89 ✓ ✓ ✓ ✓

Chang et al.90 ✓ ✓

Chapman et al.50 ✓ ✓

Chatterjee et al.83 ✓ ✓ ✓

Chen et al.47 ✓ ✓

Dong et al.91 ✓ ✓

El-Dosuky et al.92 ✓ ✓

Feist et al.93 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fu et al.94 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Gao et al.42 ✓ ✓

Grech et al.44 ✓ ✓ ✓ ✓ ✓ ✓

Grossman et al.77 ✓ ✓

He et al.54 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hirai et al.56 ✓ ✓ ✓ ✓

Honig et al.66 ✓ ✓

Jiang et al.95 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Jiao et al.84 ✓ ✓ ✓ ✓

Kalra et al.67 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Klomp et al.85 ✓

Kolluri et al.59 ✓ ✓

Krupp et al.69 ✓ ✓ ✓

Lahbib et al.96 ✓ ✓

Lai et al.43 ✓ ✓

Li et al.51 ✓ ✓

Liao et al.64 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Liu et al.45 ✓ ✓ ✓

Liu et al.39 ✓ ✓

Luu et al.72 ✓ ✓ ✓ ✓ ✓ ✓

Ma et al.80 ✓ ✓

Medeiros et al.97 ✓ ✓

Momeni et al.49 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mossberg et al.41 ✓ ✓

Nguyen et al.48 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Nikolic et al.68 ✓ ✓ ✓ ✓

Park et al.61 ✓ ✓ ✓ ✓

Peng et al.98 ✓ ✓ ✓

Sergey et al.55 ✓ ✓ ✓

Shishkin et al.99 ✓ ✓

Song et al.100 ✓ ✓ ✓ ✓ ✓

Tian et al.101 ✓ ✓ ✓

Tikhomirov et al.73 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Torres et al.74 ✓ ✓ ✓

Tsankov et al.40 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wang et al.102 ✓ ✓ ✓ ✓ ✓

Wang et al.76 ✓ ✓

Wang et al.52 ✓ ✓

Ye et al.103 ✓ ✓ ✓ ✓ ✓

Zhang et al.104 ✓ ✓ ✓ ✓ ✓

Zhang et al.105 ✓ ✓ ✓

Zhang et al.81 ✓ ✓ ✓ ✓

6.3 RQ3: How reproducible are the approaches and studies conducted?
We report the results of our labelling in terms of Reproducibility for the articles we analyzed. As for the Public Dataset,
we observed that about half of the papers (31, i.e., 46.3%) provide or use a publicly available dataset that allows independent
replications of the results. Most of the studies that share a dataset (16, i.e., 23.9%), use GitHub (e.g., the studies by Peng et
al.98, Wang et al.76, and Medeiros et al.97). Other studies (6, 9.0%) that provide the dataset through Etherscan with the date of
access to the site (e.g., SMARTSHIELD81, the study by Chang et al.90, and the study by Kolluri et al.59). Other 4 (6.0%) studies
provide their datasets through different platforms (e.g., Soliaudit64 use Google Drive). Finally, 3 (i.e., 4.5%) research studies
directly provide the Smart Contracts used in their studies directly in the paper91,47,85. We report in Table 4 the size and the year
of introduction of all the datasets available in the literature.

In terms of Public Tool or Framework, we found that only 25 (i.e., 37.3%) research papers publicly share a prototype tool
implementing the approach presented in the article. 21 out of 25 studies provide their tool through a GitHub repository58,66,59.
4 studies release their tool using an external provider (e.g., self-hosted webpage), i.e., Albert et al.82, Klomp et al.85, Luu et
al.72 and Securify40. Only one paper98 provides its tool through both a GitHub Repository and another platform (Wandbox).
We found two cases in which the tools were not publicly released, but for which a tool demo was provided as a YouTube video1.
We report in Table 5 the links to all the tools we found in the articles we reviewed.

To provide a broader view of the experimental context of the studies, we annotated, for each paper, the approaches that the
authors used as baselines to evaluate their approach. We show in Figure 9 the number of papers that used each baseline (we report

1The approach by Liu et al. 45 is available at https://youtu.be/XxJ3_-cmUiY, while the approach by Park et al. 61 is available at https://youtu.be/4XBcAclq0Vk

https://youtu.be/XxJ3_-cmUiY
https://youtu.be/4XBcAclq0Vk
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TABLE 4 Datasets of SCs in the literature.
Dataset Size Year

Akca et al. 71 1,838 Smart Contracts 2019
Albert et al. 82 24,000 Smart Contracts 2019
Ashouri et al. 63 12 real-world and educational Smart Contracts 2020
Azzopardi et al. 70 The ERC-20 token standard 2018
Bhargavan et al. 89 112,802 Smart Contracts 2016
Chang et al. 90 36,099 Smart Contracts 2019
Chapman et al. 50 3 programs 2019
Chatterjee et al. 83 36,764 real-world Ethereum Smart Contracts 2019
Chen et al. 47 16,000 execution traces 2017
Dong et al. 91 2 Smart Contracts 2019
El-Dosuky et al. 92 Crawler per Smart Contracts 2019
Feist et al. 93 36,000 Smart Contracts 2019
Fu et al. 94 More than 10,000 Smart Contracts 2019
Gao et al. 42 Repository software 2019
Grech et al. 44 All programs available on the Ethereum Blockchain on April 9, 2018 2018
Grossman et al. 77 3,444,354 blocks of the main Ethereum Blockchain 2017
He et al. 54 18,498 Smart Contracts 2019
Hirai et al. 56 Test suite 2017
Honig et al. 66 2 Smart Contract projects 2019
Jiang et al. 95 6,991 Smart Contracts 2018
Jiao et al. 84 482 test 2020
Kalra et al. 67 22,493 Smart Contracts 2018
Klomp et al. 85 2 example scripts 2018
Kolluri et al. 59 5,000 Smart Contracts 2019
Krupp et al. 69 38,757 Smart Contracts 2018
Lahbib et al. 96 1 smart contract named Access Control (AC) developed in the OrBAC access control model 2020
Lai et al. 43 7,000 Smart Contracts 2020
Li et al. 51 Truffle project with related contracts and test suite 2019
Liao et al. 64 17,979 samples 2019
Liu et al. 45 5 modified Smart Contracts 2018
Liu et al. 39 For training set 43,553 deployed Smart Contracts and for test set 1,500 Smart Contracts 2018
Luu et al. 72 19,366 Smart Contracts 2016
Ma et al. 80 10 real-world Smart Contracts 2019
Medeiros et al. 97 5 projects 2019
Momeni et al. 49 13,745 Smart Contracts 2019
Mossberg et al. 41 100 Ethereum Smart Contracts 2019
Nguyen et al. 48 Test suite 2019
Nikolic et al. 68 970,898 Smart Contracts 2018
Park et al. 61 3 projects 2018
Peng et al. 98 1,838 real Smart Contracts 2019
Sergey et al. 55 4 kind of contracts used on Ethereum: ERC20, ERC721, auction and crowdfunding 2019
Shishkin et al. 99 MiniDAO smart contracts autoprodotto 2018
Song et al. 100 49,502 Smart Contracts 2019
Tian et al. 101 20 Smart Contracts 2019
Tikhomirov et al. 73 3 Smart Contracts 2018
Torres et al. 74 1.2 million of Smart Contracts 2018
Tsankov et al. 40 1 dataset with 24,594 Smart Contracts and 1 dataset of 100 Smart Contracts written in Solidity 2018
Wang et al. 102 31,097 Smart Contracts 2019
Wang et al. 76 All sample smart contracts that are shipped with Workbench + application policies on the Github repository of

Azure Blockchain
2019

Wang et al. 52 2 private chaing and several real-world Smart Contracts 2020
Ye et al. 103 31,097 Smart Contracts in 561 files 2020
Zhang et al. 104 49,522 Smart Contracts 2020
Zhang et al. 105 100 randomly chosen real world Smart Contracts 2019
Zhang et al. 81 2,214,409 real-world Smart Contracts 2020

only the baseline approaches used by at least two studies). In this figure, we only report studies that, in their evaluation, compare
the technique introduced in the paper to a baseline. All the approaches commonly used as baselines are publicly available as
tools on GitHub, except for ZEUS67 (used by 5 papers), ReGuard45, and KEVM57 (both used by 2 papers).

OYENTE 72 is the most used baseline. This is probably due to the fact that such an approach was one of the first in the field
and it has served as the starting point for several other projects, also because it is an open-source tool. OYENTE is basically a
symbolic execution framework to help developers to find potential security bugs of the Ethereum Smart Contracts and works on
the EVM. It consists of four modules, namely CFGBuilder, Explorer, CoreAnalysis, and Validator. The CFGBuilder constructs
a Control Flow Graph of the contract, the contracts’ CFG is provided to the Explorer, which symbolically executes the contract.
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TABLE 5 Publicly available frameworks and tools for finding issues in Smart Contracts.

Type Framework Link

GitHub

Amani et al.58 https://git.io/JJxne
Azzopardi et al.70 https://git.io/JJxZ6
Feist et al.93 https://git.io/JJxn7
Grech et al.44 https://git.io/JJxZb
Grossman et al.77 https://git.io/JJxnP
He et al.54 https://git.io/JJxnL
Honig et al.66 https://git.io/JJxZu
Jiang et al.95 https://git.io/JtD2r
Jiao et al.84 https://git.io/JJxZz
Kolluri et al.59 https://git.io/JJxnf
Li et al.51 https://git.io/JtD2F
Medeiros et al.97 https://git.io/JJxnS
Mossberg et al.41 https://git.io/v7beQ
Nguyen et al.48 https://git.io/JJxZa
Nikolic et al.68 https://git.io/JJxct
Sergey et al.55 https://git.io/JJxZd
Tikhomirov et al.73 https://git.io/JJxn6
Torres et al.74 https://git.io/JJxny
Zhang et al.105 https://git.io/JJxnk
Gao et al.42 https://git.io/Jtybh
Peng et al.98 https://git.io/JtyNf

Other

Albert et al.82 http://costa.fdi.ucm.es/papers/costa/safevm.ova
Klomp et al.85 https://git.science.uu.nl/r.klomp/BitcoinAnalysis
Luu et al.72 https://www.comp.nus.edu.sg/loiluu/oyente.html
Tsankov et al.106 https://securify.ch
Peng et al.98 https://wandbox.org/permlink/PnaL6bO9zipKRuKu

Finally, the output is fed to the CoreAnalysis, which targets vulnerabilities such as Transaction-Ordering Dependence, Times-
tamp Dependence, Mishandled Exceptions, and Reentrancy Vulnerability. In the end, the Validator filters out false positives
contracts flagged by the tool.

We report in Figure 10 a graph in which the nodes represents papers and the directed edges indicate a paper has used the
approach defined in the pointed paper as a baseline. This map may guide future researchers to select the most appropriate baseline
with which they can compare their novel approaches.

Summary of RQ3. About half of the papers analyzed shared their datasets, while about a third of them publicly
release a prototype tool implementing the defined approach. We observed that, naturally, open-source tools are
more likely to be used as baselines in other studies and to be extended.

6.4 Discussion and Open Problems
Smart Contract technology is a quite new topic in the research context. During the last few years, blockchain technology has
grown rapidly involving new tools and application contexts other than just being used as a virtual currency. This implies that there
is a growing need for new techniques and approaches that support the new features introduced in the upcoming new versions of
the software system behind the specific SC technology. There are security vulnerabilities that are still not discovered (zero-day
vulnerabilities), even if some approaches specifically target this kind of security issues48. Note that our review was specifically
focused on approaches targeting Smart Contracts. Some issues, however, might be external to the SCs, e.g., they may be related
to the structure of the network. For example, Xu et al.107 (which we excluded from our literature review) proposed an approach

https://git.io/JJxne
https://git.io/JJxZ6
https://git.io/JJxn7
https://git.io/JJxZb
https://git.io/JJxnP
https://git.io/JJxnL
https://git.io/JJxZu
https://git.io/JtD2r
https://git.io/JJxZz
https://git.io/JJxnf
https://git.io/JtD2F
https://git.io/JJxnS
https://git.io/v7beQ
https://git.io/JJxZa
https://git.io/JJxct
https://git.io/JJxZd
https://git.io/JJxn6
https://git.io/JJxny
https://git.io/JJxnk
https://git.io/Jtybh
https://git.io/JtyNf
http://costa.fdi.ucm.es/papers/costa/safevm.ova
https://git.science.uu.nl/r.klomp/BitcoinAnalysis
https://www.comp.nus.edu.sg/loiluu/oyente.html 
https://securify.ch
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FIGURE 9 Usage of approaches as baselines in other studies. We only report the ones used by at least two papers.
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FIGURE 10 Map of the baselines used for the evaluation of each approach proposed in the papers we analyzed in our literature
review.

for the detection of eclipse attacks. This kind of attack enables malicious actors to isolate a system user by taking control of all
outgoing connections. To avoid this kind of security issue, specialized middlewares can be adopted, such as specialized firewalls
for the monitoring of the overall network traffic. We discuss below some gaps highlighted by our literature review that future
research should try to fill.

Support for Non-Ethereum Blockchains. As Ethereum and his language Solidity were firstly introduced and widely used,
most of the existing approaches are focused only on these technologies. The fact that the vast majority of the approaches target
only a single Blockchain technology (i.e., Ethereum shows an important gap in the literature). While the same is partially true
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for other areas of Software Engineering research (e.g., Java is often the most targeted programming languages for many types
of approaches), it can be noticed that the technologies behind SCs are much more different among each other than general-
purpose programming languages. Different blockchain provides different features, thus enabling possibly different bugs and
vulnerabilities. While an approach devised for Java could be adapted to a broader class of object-oriented programming languages
with a limited effort, the same might not be true for approaches that target SCs. For example, the Bitcoin Scripting Language
is not Turing-complete: approaches working on Ethereum-based languages may not be directly adapted to such a profoundly
different language. Therefore, we believe that future studies should try to target other very common blockchain technologies,
such as Bitcoin and Hyperledger108.

Reference Datasets of Bugs and Vulnerabilities. Most of the papers we analyzed defined their own datasets or they re-
used previously defined small datasets including SCs with the specific bugs and vulnerabilities targeted by the approach they
introduced. There is a lack of a comprehensive state-of-art dataset including both buggy and vulnerable SCs that can be used as a
universal benchmark for evaluating novel approaches. Also, it can be useful to have a public dataset of vulnerable Smart Contracts
referred to the security vulnerabilities reported in the SWC registry. In some cases, methods for Smart Contracts generation
are used. For example, to train their approach based on machine learning, Momeni et al.49 built a dataset of vulnerable Smart
Contracts using two static analysis based approaches. Finally, our analysis highlighted that there is no universally recognized
registry for vulnerabilities of SCs yet. The SWC registry is an attempt in this direction, but we found that it does not cover
some important weaknesses targeted by state-of-the-art approaches. At the moment, the information about weaknesses in SCs
is scattered, and future work should be aimed at providing a unified registry, similar to MITRE’s CWE14.

Technological Support for Testing Smart Contracts. Since Smart Contracts are based by design on distributed systems (i.e.,
blockchains), it is difficult to apply classic testing techniques and methodologies. Testnets are fully working blockchains publicly
available only for testing purposes. For Ethereum, one of the most used ones is Kovan109 . Using such an approach requires set-
up and deploy a fully working blockchain: the need to perform such operations may hinder the adoption of testing altogether.
Using modern containerization tools such as Docker110 and Kubernetes can help to deploy a minimal working example of a
specific Smart Contract only to run tests. An example is the approach proposed by Chen et al.86, which involves containers to
build a simulated blockchain network for testing purposes.

Beyond Isolated Smart Contracts. Some SCs partially or totally rely on external SCs to work properly through the off-chain
transactions. Therefore, some Smart Contracts may have properties across multiple interacting contracts70. Extending testing
approaches to these contexts can be an important future direction in the field.

7 THREATS TO VALIDITY

Our Systematic Literature Review may be affected by threats to validity for every single step. Specifically, we describe below
the threats regard (i) the selection of the primary studies, including the manual evaluation for including/excluding articles, and
(ii) the classification framework.

7.1 Article Selection
The first threat regards the definition of the search query has a primary role in a Systematic Literature Review. Using a query
too narrow may exclude interesting articles from the review, while using a query too broad may increase the burden of manually
discarding a great number of false positives. To reduce the risk of both such problems, we defined the query after having analyzed
the first set of valid articles. However, it is still possible that some relevant articles might have not been included in the first set
of primary studies.

Another important threat regards the choice of inclusion and exclusion criteria. In our work we intentionally did not include
grey literature, i.e., we only considered peer-reviewed articles. While this choice could result in the exclusion of interesting
articles introducing relevant approaches, it allows us to have confidence in the acceptable quality of the selected studies. It is
worth noting that, since the topic we surveyed is relatively new, we did not exclude short papers a-priori. Instead, we always
excluded the papers that did not provide any validation (even a minimal one) to avoid completely untested ideas.
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7.2 Classification Framework
The definition of dimensions, attributes and values of our classification framework may have an impact on the results. For
example, excluding a recurring type of approach may result in hiding some relevant piece of information. To define the dimen-
sions and the attributes, we strictly based on the research questions that guided our SLR. To reduce the risk of missing relevant
values, we first defined an initial set of values, but we refined our classification framework after first labelling the primary studies.
This allowed us to introduce more detailed values.

Manually reading and classifying the articles according to the classification framework we defined requires subjectively
interpret parts of the articles. Only part of the information was explicitly mentioned by the authors: for example, some of the
primary studies analyzed did not clearly mention the base methodology used (e.g., static or dynamic analysis) or the targeted
technology (e.g., they assumed it based on the targeted programming language, or vice versa). Most noticeably, some work did
not explicitly mention the CWE ID of the weaknesses targeted by the approach (e.g., they used their names). To reduce the
risk of introducing biases due to subjective classifications, three of the authors independently classified all the articles. A fourth
author was involved when consensus could not be achieved.

8 CONCLUSION

Smart Contracts are an important component of some blockchains (e.g., Ethereum and Bitcoin). They allow users to write
programmatic agreements among two or more parties that can not be rescinded. SCs may be affected by bugs and security
vulnerabilities but, differently from other types of programs, they can not be fixed and updated later because of their nature of
agreements. We conducted a Systematic Literature Review on the approaches defined to detect functional and security-related
issues in SCs to (i) understand what is the state of the art in this field, and (ii) to find possible open problems that future research
should address. Our review process was based on the use of a classification framework that allowed us to extract relevant
information from the primary studies we selected.

First of all, we found that most of the approaches in the literature are based on static analysis, and, among them, formal methods
are generally preferred. While such approaches generally have scalability issues that hamper their usage for large software
systems, they are well-suited for SCs, which are generally small and, most importantly, need to be correct from the beginning.
Other techniques are less popular: machine learning-based approaches are gaining popularity, but few of them are available.

Another interesting finding is that most of the approaches focus on security. While a catalogue of possible weaknesses exists
(SWC), we observed a misalignment between such a catalogue and the literature. A subset of weaknesses is targeted by existing
approaches (most notably, Reentrancy and Integer Overflow and Underflow), while 8 SWC weaknesses are not taken into account
by any existing approach. Moreover, we found 3 weaknesses targeted by existing approaches that do not appear in the SWC
catalogue.

In terms of targeted technologies, we found a noticeable imbalance in the state of the art: the large majority of the approaches
target Ethereum-based SCs. Also, most of such approaches target the most popular programming language for SCs in Ethereum,
Solidity. However, we believe that this is not a major issue: A good amount of approaches exist for the EVM Bytecode, the
low-level language in which all the high-level languages must compile to be executed. Therefore, all languages can potentially
be supported.

Finally, we observed that only half of the papers we analyzed using publicly available datasets for their experiments. Moreover,
only a third of them publicly release at least a prototype tool with their approach to foster the replicability of the experimental
results. We found clear evidence (besides the anecdotical beliefs) that releasing a tool has a positive effect on the research
community: most of the baselines used for assessing the worth of new approaches are constituted publicly available ones. In
other words, a good approach that is not available may be hard to reproduce and, therefore, it is rarely used as a baseline. A clear
example of this is Oyente72, one of the first tools released for detecting issues in SCs. Such an approach was not only largely
used as a baseline, but it was used as a base for many other approaches.

We also identified three principal future directions in this field. Future research should be aimed at (i) defining new approaches
targeting SCs for blockchains different from Ethereum, (ii) building a reference dataset for evaluating approaches for detecting
issues in SCs, and (iii) finding issues related to the interaction among different SCs.
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APPENDIX
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B SWC CATALOG OF VULNERABILITIES FOR SMART CONTRACTS

TABLE B2 Security vulnerabilities in Smart Contracts (first part)

SWC-ID Name Summary
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SWC-100 Function Default Visibility Function are set to public by default. If a developer does not change its
visibility, the attacker can make unauthorized changes.

✓

SWC-101 Integer Overflow and Underflow An arithmetic operation generates an output that is out of the range of the
representable number (both for the upper limit and for the lower limit).

SWC-102 Outdated Compiler Version The compiler version is too old. ✓

SWC-103 Floating Pragma Contracts are distributed with a different compiler version and different
flags of those tested.

✓

SWC-104 Unchecked Call Return Value The call return value is not checked and the execution will continue also
after an exception. If the call fails accidentally or for malicious actions,
this can return an unexpected behaviour.

✓ ✓

SWC-105 Unprotected Ether Withdrawal For missing access controls, malicious parties can take some or all Ether
from the contract account.

✓

SWC-106 Unprotected SELFDESTRUCT Instruction For missing access controls, malicious parties can trigger the self-
destruction of the contract.

✓

SWC-107 Reentrancy A malicious contract calls back into the calling contract during another
invocation of the function, causing different invocations of the function.

✓

SWC-108 State Variable Default Visibility The visibility label can allow erroneous assumptions on who can access
to the variable.

✓

SWC-109 Uninitialized Storage Pointer Uninitialized local storage variables are linked to unexpected storage
locations in the contract.

✓ ✓ ✓

SWC-110 Assert Violation The assert() function is used to assert invariants, but this can be vio-
lated if in the contract there is a bug that takes in a invalid state or the
assertion is not correct.

✓

SWC-111 Use of Deprecated Solidity Functions The use of deprecated functions and operators can reduce the code qual-
ity.

✓

SWC-112 Deletagecall to Untrusted Callee Delegatecall is a message call but the code at the target address is exe-
cuted in the context of the calling contract. The target address could be
not trusted.

✓ ✓ ✓

SWC-113 DoS with Failed Call If an external call fails, the contract can be verified a DoS condition. ✓ ✓ ✓

SWC-114 Transaction Order Dependence This vulnerability is also called race condition. A race condition vul-
nerability is occured when code is dependent by the order of the
transactions submitted to it.

✓ ✓ ✓

SWC-115 Authorization through tx.origin The global variable tx.origin is associated to the address of who sent
the transaction. If the authorized account call a malicious contract, a
contract could become vulnerable. Consequently, a call to the vulnera-
ble contract might seem correct because it has been performed from an
authorized sender.

✓

SWC-116 Block values as a proxy for time The access to time values can be unsafe (i.e., block.timestamp and
block.number). For example, regards to block.timestamp, mali-
cious miners can change timestamps in the blocks.

✓ ✓ ✓

SWC-117 Signature Malleability Signature can be valid also after the alteration. The change can be light
because a malicious user can alter some values.

✓ ✓ ✓
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TABLE B3 Security vulnerabilities in Smart Contracts (second part)

SWC-ID Name Summary
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SWC-118 Incorrect Constructor Name The constructor name can cause security issues if this does not corre-
spond to the contract name.

✓ ✓ ✓

SWC-119 Shadowing State Variables This vulnerability is verified if there are multiple definitions on the con-
tract and function level.

✓

SWC-120 Weak Sources of Randomness from CA A weak source of randomness is very dangerous in Ethereum because
the miner can extract many blocks in a short time.

✓ ✓ ✓

SWC-121 Missing Protection against SRA For having a major usability or for saving gas cost, it needs to verify
the signature in Smart Contracts and to have a secure implementation
against Signature Replay Attacks. An attacker could obtain the message
hash contained in the contract, which does not store all processed mes-
sage hashes.

✓ ✓ ✓

SWC-122 Lack of Proper Signature Verification In smart contract systems, users can sign off-chain messages because
these systems can retrieve the authenticity of signed messages before of
the processing. By the way, these systems cannot directly interact with
smart contracts, but some of them can assume the validity of a signed
message causing a vulnerability.

✓ ✓

SWC-123 Requirement Violation The require() construct is used to validate external inputs of a func-
tion. External inputs can be provided by callers and can be returned by
callees. The first case is called precondition violations and this is veri-
fied when in the contract there is a bug that returns an external input or
when the requisit condition is too strong.

✓

SWC-124 Write to Arbitrary Storage Location The smart contract have to allow the writing only to authorized users in
sensitive storage locations. If a malicious user can write in these loca-
tion, then the authorization can be bypassed.

✓ ✓ ✓ ✓ ✓

SWC-125 Incorrect Inheritance Order Given the multiple inheritance, Solidity can have a Diamond Problem:
the base contracts define the same function and the child contract do not
know what have to call. For having a normal behavior, base contracts
should have different priorities.

✓

SWC-126 Insufficient Gas Griefing This type of attack are performed on contracts that take data to use it in a
sub-call on another contract. The sub-call fails, but the execution could
be continue. If we have a relayer contract the ’forwarder’ can censor
transactions with the sufficient gas, but it cannot be used for the success
of sub-call.

✓

SWC-127 Arbitrary Jump with Func. Type Variable The user can arbitrary change the function type variable and the execu-
tion of variables can be randomly. If the user is malicious, he can point
to a function type variable in any instructions without respect required
validations.

✓

SWC-128 DoS With Block Gas Limit To call functions in smart contracts, there is the need to have a certain
amount of gas. If the execution cost of a function is greater than the limit
of block gas, it is possible to have a Denial of Service.

✓ ✓ ✓

SWC-129 Typographical Error This error is verified when the operation is defined in a wrong way (e.g.,
the operation is +=, but accidentally it is become =+).

✓
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TABLE B4 Security vulnerabilities in Smart Contracts (third part)

SWC-ID Name Summary
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SWC-130 Right-To-Left-Override control character Attackers can use the character U+202E to force RTL text rendering
and to change the real intent of a contract.

✓ ✓

SWC-131 Presence of unused variables A best practice is to avoid unused variables, because computations can
increase and consume unnecessary gas. Anothe problem is the decrease
of the code readability.

✓

SWC-132 Unexpected Ether Balance If the Ether balance is incorrect, smart contracts can behave in an erro-
neous way.

✓

SWC-133 Hash Collisions With Multiple VarLen Args. It is possible to have an hash collision, if the abi.encodePacked() has
multiple variable length arguments.

✓

SWC-134 Message call with hardcoded gas amount There is a setting on the forward of gas (i.e., 2300 gas) of the
transfer() and send(). If the gas cost increase significantly on
instructions, smart contracts can break.

✓ ✓ ✓

SWC-135 Code With No Effects The developer can produce a code with no effects in Solidity. ✓

SWC-136 Unencrypted Private Data On-Chain Malicious users can read contract transactions to understand values
stored in the state’s contract. Thus, it is important to have private vari-
able.

✓ ✓
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