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Docker is a containerization technology that allows developers to ship software applications along with their dependencies in Docker
images. Developers can extend existing images using them as base images when writing Dockerfiles. However, a lot of alternative
functionally-equivalent base images are available. While many studies define and evaluate quality features that can be extracted from
Docker artifacts, it is still unclear what are the criteria on which developers choose a base image over another.

In this paper, we aim to fill this gap. First, we conduct a literature review through which we define a taxonomy of quality features,
identifying two main groups: Configuration-related features (i.e., mainly related to the Dockerfile and image build process), and
externally observable features (i.e., what the Docker image users can observe). Second, we ran an empirical study considering the
developers’ preference for 2,441 Docker images in 1,911 open-source software projects. We want to understand (i) how the externally
observable features influence the developers’ preferences, and (ii) how they are related to the configuration-related features. Our results
pave the way to the definition of a reliable quality measure for Docker artifacts, along with tools that support developers for a
quality-aware development of them.

CCS Concepts: • Software and its engineering → Software notations and tools.
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1 INTRODUCTION

Deploying software and keeping it in operation is technically challenging. Moreover, the production environment
is rarely identical to the development environment, which increases the risk of failures, e.g., due to missing runtime
dependencies, or even security vulnerabilities.

Containerization allows developers to ship software applications along with dependencies and the execution en-
vironment. Thanks to containerization, it is possible to run the application on any system [5] and test it in the same
environment used in production. Docker1 is one of the most popular containerization platforms used in the DevOps
workflow. Docker allows releasing applications with their dependencies through containers (i.e., virtual environments)
sharing the kernel of the host operating system. The specification file of a Docker image is called Dockerfile. DockerHub2

1https://www.docker.com/
2https://hub.docker.com/
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is an online repository similar to those for source code, i.e., GitHub, which hosts a set of Docker images that can be
downloaded and used by developers.

When writing the Dockerfile for a given application, developers usually start from a pre-existing image containing
the basic dependencies needed. For example, to containerize a Java application, it will be necessary to provide the
Java Runtime Environment (JRE): Therefore, a base image with the JRE could be adopted. However, many alternative
images exist that provide the same (or analogous) dependencies, and developers find it difficult to search for Docker
images on DockerHub [4, 15]. In general, we can extract different features from Docker images, i.e., externally observable
features, that influence their adoption as they are what developers and image users can observe when they have
to choose a Docker image to use. Such features include, for example, the image size [18] related to the resources
that the image will use, and the presence of software vulnerabilities [24, 30, 39] which can lead security risks. Such
externally observable features are influenced by configuration-related features, i.e., mainly related to development aspects
of the Dockerfiles that might positively or negatively affect the resulting Docker image. Examples are the presence of
Dockerfile smells [20, 34] which can lead to the introduction of security issues [39]. Static analysis tools can support
developers to follow best practices in Dockerfiles [1, 12, 36] and, thus, minimize the presence of internal quality issues.
However, they may not be sufficient to assess the absence of code smells [23]. Despite such exemplary features and
the presence of a plethora of studies that focus on specific quality issues, the literature lacks a general view of what
are the externally observable and configuration-related features of Docker images and Dockerfiles. Similarly, to the
best of our knowledge, it is unclear (i) how externally observable features impact developers’ preferences when they
have to choose a Docker image, and (ii) the impact of configuration-related features on the external ones. In this
paper, we aim at filling these gaps. First, we reviewed 31 papers to define a comprehensive taxonomy of externally
observable features and configuration-related features features of Docker images and Dockerfiles. Then, we conduct an
empirical study on a dataset of 2,441 open-source Docker images. We aim at finding out what external features impact
the developers’ preferences in terms of actual adoptions (i.e., how frequently they appear in the FROM statements of
app-specific Dockerfiles) and perceived quality, intended as the prominence of a Docker image over others (i.e., number
of stars on DockerHub). Our results show that, as expected, official Docker images have a positive relationship with both
adoptions and prominence. Besides, both image size and the number of exposed secrets (i.e., a metric related to security)
negatively impact the developers’ preferences. Interestingly, the number of vulnerabilities only impacts the prominence
of the image, but not the actual number of adoptions. This result suggests that developers are aware that some problems
affect the quality of the images, but this does not change their behavior when they have to choose a Docker image to
use (mostly because they are not aware of alternatives [15]). Moreover, our results show that the less the number of
SLOC, the less the occurrence of vulnerabilities as also shown in previous studies [2, 25]. In the same way, also the
image size decreases when the number of LOCs are decreasing. This means that a smaller image size has a positive
impact on the developers’ preferences. Also, we found no relationship between the presence of Dockerfile smells and
any of the external features. Shell script smells, instead, have an impact on security-related features. However, there are
some exceptions. This is mainly because, as we performed a correlation study, it can not be implied causality based on
these results. For example, not all instructions (in terms of SLOC) directly impact the image size. For example, this not
applies when removing instructions like EXPOSE or LABEL. On the other hand, shell script smells are not always related
to security. It is proven that mature Docker images tend to have fewer security issues [30], despite the number of smells.
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Fig. 1. An example of Dockerfile from the official documentation

1 FROM ubuntu :18.04
2
3 COPY . /app
4 RUN make /app
5 CMD ["python", "/app/app.py"]

To summarize, we provide the following contributions:

• We define a taxonomy of metrics and attributes extracted from a total of 31 research papers through a literature
review;

• We conduct an empirical study on a total of 2,441 Docker images to evaluate which external features developers
consider important in terms of adoption or to positively evaluate Docker images;

• We find out what are the configuration-related features that affect the externally observable features that are
related to the adoption of Docker images.

The rest of our paper is organized as follows. In Section 2 we give some preliminary concepts to better understand
how Docker works, and also we discuss some of the relevant works from the literature. In Section 3 we describe the
procedure used for building the taxonomy of features and metrics of Dockerfile artifacts. In Section 4 we present
some hypotheses related to the impact of the quality features on developers’ preferences. In Section 5, we present our
empirical study to evaluate the impact of the quality features on the developers’ preferences. We discuss the results in
Section 6, and the threats of validity in Section 7. Finally, in Section 8 we provide the conclusion along with future
directions.

2 BACKGROUND AND RELATEDWORK

In this section, we describe some preliminary concepts about Docker, its functionalities, and the tools typically used to
assess the quality of Docker artifacts.

2.1 Docker Basics

Docker is one of the most popular containerization technologies. The main purpose is to ship an application along
with its dependencies and execution environment. A Dockerfile is the specification file behind a Docker application, in
which there are source code lines that define the packages and dependencies needed by the application, in addition to
the configuration of the environment. An example of a Dockerfile is reported in Fig. 1.

The programming language used to define a Dockerfile is composed of specific instructions3. Each Docker instruction
performs specific actions, usually defined by shell script code. For example, the main Docker instruction with which
each Dockerfile begins is FROM, which defines a so-called base image from which the new Docker image defined in the
Dockerfile can inherit dependencies and configurations. Every Docker image can be used as base image and, therefore,
extended. The RUN instruction contains one or more commands that will be executed in a shell environment (i.e., RUN
<command>), that is by default /bin/sh -c. Starting from a Dockerfile, a Docker image containing the application is
created via the build operation. While building the image, Docker runs all the instructions in the Dockerfile (e.g., to
download dependencies and resources or to build the software product). The Docker image is then ready to be used to

3https://docs.docker.com/engine/reference/builder/
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execute the application. Each image is composed of layers, which are snapshots of the image during the build process.
Each layer is created by a Docker instruction that makes changes to the image itself. The main purpose is to make the
build process modular and to speed it up using caching: Instead of running all the instructions of a Dockerfile, it is
possible to save time and resources by re-using pre-built layers, when possible (e.g., avoid re-installing of software
packages). A Docker image is executed in a container, i.e., a lightweight virtual machine that as their own resources,
such as networks and storage volumes.

Each Docker image is uniquely identified by the digest, a hash value computed at build time based on the composition
of the image. However, it is common practice to assign a meaningful name (i.e., a tag) to the images, so that it is possible
to refer to them more easily. The image tag is usually composed of the name of the software installed in it (e.g., php), its
version (e.g., 7.0), and its flavor (e.g., slim).4 The latter might denote differences in terms of non-functional requirements
(e.g., the reduced size). An example of a tag is "name:version-flavor". It is worth specifying that the same Docker
image can have multiple tags, thus the only way to identify unique images is using the digest.

Similarly to software dependency management systems (such as Maven), all the Docker images are distributed
through registries, from which developers can retrieve and use them. There are two kinds of registries: private and
public. Private registries are usually restricted to specific companies or usages (e.g., an internal registry of a large
software system to host and deploy images on Kubernetes), while the main public registry is DockerHub5. There are
four types of images hosted on DockerHub. First, we have official images6, maintained following the official images
review guidelines7. The aim is to ensure the overall quality of such images. Second, there are images from verified
publishers, i.e., publishers that can be trusted, but that do not necessarily produce official images that follow the
previously mentioned guidelines. Third, we have images that are part of the Docker Open Source program8, maintained
by organizations that are members of that program. Last, we have the non-official images, which are provided by the
users of the Docker community.

The operation of uploading an image on DockerHub is called push. It can be performed using the command docker

push, where usually the developers build the Dockerfile, assign a tag to the resulting image, and upload it to the registry.
This means that the Dockerfile is not uploaded to the registry but only to the resulting image blob. In some cases, the
developers that maintain the DockerHub repositories add the link to the source Dockerfiles for the image or else the git
repository where the Dockerfile is maintained. For each hosted image, DockerHub provides a series of information
such as tags, last update, digest, description, and some metadata such as stargazers count (set by users) and the number
of pulls (i.e., how many times the image has been downloaded).

2.2 Support tools for Docker Images and Dockerfiles

Several tools are available for Docker images and Dockerfiles to support developers during development. The most
used is hadolint [1], a static analysis tool to check best practices9 in Dockerfiles. The tool parses the Dockerfile into an
equivalent AST and verifies a set of rules. Each rule, defined by an identifier, is associated with a writing best practice.
For example, the rule DL3008 checks for missing version pinning for packages installed via apt-get. The number
of rule violations is a common measure of the quality of Dockerfiles [5]. Other tools, instead, assess the security of

4https://docs.docker.com/engine/reference/commandline/tag/
5https://hub.docker.com/
6https://docs.docker.com/docker-hub/official_images/
7https://github.com/docker-library/official-images#review-guidelines
8https://www.docker.com/community/open-source/application/
9https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
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Docker images. For example, docker-bench-security10 is a tool that checks for various security best practices for the
deployment of Docker applications in production environments11. Moreover, there is a built-in tool for vulnerability
scan on Docker images, i.e., the command docker scan12, that checks for Common Vulnerabilities and Exposures13

(CVE). Unfortunately, the tool requires a premium plan for an unlimited number of scans. An open-source alternative is
the clair-scanner tool14, which also performs checks for the presence of CVEs on Docker images. Furthermore, some
tools allow performing reverse engineering on Docker images to extract the source code that created each layer. An
example is a tool whaler15, which besides the source code, also extracts additional information such as the main user
account, the environment variables, and if there are exposed secrets inside the Docker image (i.e., sensitive information
such as login credentials). In our study, to extract the quality features of Docker images and Dockerfile, we adopt
hadolint to detect smells, clair-scanner for security vulnerabilities, and whaler to extract the additional information
from Docker images.

2.3 Studies on the quality of Docker Artifacts

SSeveral studies analyzed the quality aspects of Docker images and Dockerfiles.
Wu et al. [34] conducted an empirical analysis on the occurrence of Dockerfile smells, involving a large-scale dataset

of Dockerfiles. Their findings show that smells are very common in Dockerfiles, as they are present in 84% of analyzed
GitHub projects. Also, the number of smells is related to the programming language used. Moreover, popular and young
project repositories and projects with many contributors tend to have fewer Dockerfile smells. We considered in our
study some of the dependent and independent variables involved in their study as metrics to include in our taxonomy.
Then, we used those metrics to extract the measured features from the Docker images involved in our empirical study.
Their analysis is mainly focused on the quality assessment of Dockerfiles in terms of the occurrence of smells, while, in
our study, we extend the concept of quality to both external and configuration features that can be measured on Docker
images and Dockerfiles.

Zhang et al. [41] performed an empirical study on the impact of the evolutionary trajectories of Dockerfiles.
The evolutionary trajectories describe the frequency and type of modifications performed by the Dockerfile project
maintainers. Then, through a regression analysis, the authors evaluate their impact on the quality and image build
latency. The results show that different types of evolutionary categories have a different impact on quality. In our study,
we do not consider the change history of the Dockerfiles, but it is useful to evaluate the independent variables analyzed
in their study. However, we do not consider evolutionary trajectories, because they are correlated with the quantity of
best practices violations that we also consider.

Ksontini et al. [19] performed a study on refactoring operations and technical debts in open-source Docker projects.
As a result, they propose a taxonomy of refactoring operations, where the most applied are those reducing the size of
Docker images and improving the extensibility of docker-compose specification files. Also, a set of technical debts is
defined. The main difference with our taxonomy is that we propose a set of specific metrics and features measuring the
quality perceived by developers for Docker images and Dockerfiles. Moreover, we considered in our taxonomy the
features related to refactoring operations and technical debts, that are related to the quality, involved in their study.

10https://github.com/docker/docker-bench-security
11https://www.cisecurity.org/benchmark/docker
12https://docs.snyk.io/more-info/getting-started/snyk-integrations/docker/scanning-with-the-docker-cli
13https://cve.mitre.org/
14https://github.com/arminc/clair-scanner
15https://github.com/P3GLEG/Whaler
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Azuma et al. [3] conducted a study where they categorize self-admitted technical debts (SATDs) in Dockerfiles. As a
result, they proposed a classification identifying five classes and eleven subclasses of different Docker SATDs. Also, code
debt and test debt are common SATDs in Dockerfiles, where 42% of them are Docker-specific. The main difference with
our study is that SATDs are related only to Dockerfiles, whereas we also consider Docker images. Moreover, not all the
SATDs are related to code quality, but also to different non-functional aspects (e.g., design, testing, and maintainability).
We only included in our taxonomy only the aspects related to SATDs that can influence the quality of Dockerfiles.

Ibrahim et al. [15] conducted an empirical study to evaluate the differences among Docker images hosted on
DockerHub to support users to select the most suitable image to be adopted. Their results show that official images are
more popular than community images. They show that community images are more resource-efficient than the studied
software systems. Also, there are fewer security vulnerabilities than in their respective official images. In our study, we
evaluate the adoption of Docker images instead of popularity. In addition, we analyze a larger set of features extracted
from Docker images and Dockerfiles, defining also a detailed taxonomy of these features.

However, none of the previous studies evaluate the perspective of the developers and image users. The results of our
work provide the missing piece in terms of how the presence of smells [35] and other internal quality issues related to
the Dockerfiles [3, 19] impact on the adoption of Docker images. Moreover, our results are complementary to those of
Ibrahim et al. [15], providing a different perspective regarding the actual usages of the Docker images, considering at
the same time also the prominence of a specific Docker image over the others by taking into account the stargazers
count.

Table 1. Inclusion and exclusion criteria for the selection of primary studies.

Inclusion Criteria

IC1 The paper has been peer-reviewed (published either in a journal or
in the proceedings of a conference)

IC2 The elements treated are either Docker images or Dockerfiles
IC3 The paper title or abstract contains the keywords quality and Docker

in the title, or is explicitly referenced by another paper matching
this criterion and contains quality-related keywords (e.g., refactoring,
smell, bug)

IC4 The paper focuses on non-functional aspects of Docker images or
Dockerfiles related to quality

Exclusion Criteria

EC1 The paper is not written in English language
EC2 The paper is not published by IEEE, ACM, Springer, Elsevier
EC3 The paper focuses on aspects related to the architecture of Docker

images (e.g., storage system)
EC4 The paper is not presenting quality metrics for Docker images or

Dockerfiles
EC5 The paper is not a technical article published in a journal or in the

proceedings of an international conference/workshop)

6
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Fig. 2. Taxonomy of external and configuration features and metrics. For each feature, the number of references from the literature is
reported. For each metric, an up or down arrow indicates if it is positively or negatively correlated to the feature it measures.
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3 DISCOVERING EXTERNAL AND CONFIGURATION FEATURES OF DOCKER ARTIFACTS

In this section, we present the preliminary study we conducted to collect the quality features and metrics of Docker
images and Dockerfiles. We first present the methodology we used for collecting and analyzing relevant papers on
Dockerfile quality, from which we aim at extracting knowledge, and then we present the obtained results.

3.1 Methodology

The goal of this preliminary study is to collect a set of configuration-related features and externally observable features
of Docker images and Dockerfiles. To achieve this, we conduct a literature review of scientific articles about Docker
quality, and we qualitatively analyze them to extract the information related to features and metrics. We have not
performed a rigorous Systematic Literature Review (SLR) on quality aspects because the topic is too broad and it would
have been outside the scope of this step (i.e., selecting quality metrics). We describe below, in detail, the procedure we
followed.

3.1.1 Identification of Relevant Articles. We searched for studies regarding Docker quality, as a general topic. To do this,
we relied on Google Scholar, and we used the generic query “docker quality”. We collected a core set of articles that
conduct studies on the quality of Docker images and Dockerfiles. Specifically, starting from the first paper returned by
Google Scholar, we considered all subsequent papers stopping when the title and abstract did not contain the keywords
docker and quality (∼ 30 results). We defined a set of inclusion and exclusion criteria, reported in Table 1, for selecting
the articles of interest. After having collected the first set of papers, we read their titles and abstracts, and we verified
the criteria IC1, IC2, IC3, EC1, EC2, EC5. At this stage, if we were not sure whether any of the used criteria were met,
we kept the paper. Next, we used snowballing (i.e., we analyzed the relevant references of the selected papers) and
looked for more recent papers citing them by relying, again, on Google Scholar. We used the previously described
process to filter them and include, in the end, only the possibly relevant ones. We applied a less strict filter on the
title and abstract, also looking for words related to quality improvements (e.g., refactoring, technical debt, repair) or
quality-related aspects (e.g., smells, build failures, security, performance, bugs). Finally, we carefully read the whole
papers and filtered them using all the inclusion and exclusion criteria. In total, we analyzed 75 articles. We excluded 44
of them, and we were left with a total of 31 relevant articles to analyze in the next steps.

In terms of editorial collocation, most of the papers we selected were published in the proceedings of international
conferences (i.e., 23 of 31) while only 7 of them were published in journals. The most occurring venue isMining Software

Repositories (MSR), with 5 articles, followed by International Conference on Software Engineering (ICSE) (4 articles). The
temporal collocation is between 2017 and 2022, and most of the articles are from 2019 (16 out of 31). This is expected,
given the fact that Docker was introduced in 2013 and, therefore, the scientific interest in the adoption of such a tool
has started increasing only recently, following the adoption by developers of open-source software, for which data are
easily accessible.

3.1.2 Qualitative Analysis Methodology. We analyzed the selected articles to find out the discussed metrics and features
related to quality from the literature. For extracting the information of interest, we adopted the card sorting approach [32].
We identified, for each paper, the quality features and the possible metrics defined to measure them. Two of the authors,
independently, assigned one or more tags to each article by distinguishing tags related to the quality features and the
ones related to the quality metrics. Given the set of assigned tags for each category (features and metrics), we analyzed
them, aiming at using a unique expression when the two evaluators used different tags for expressing the same concept

8
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Table 2. Summary table of Docker configuration-related and externally observable metrics. The symbol * means that is a newly
introduced metric.
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(e.g., “image size” and “size”). The two evaluators discussed the cases in which there were conflicts on the assigned tags,
aiming at reaching a consensus.

After having completed the tag assignment, we organized the tags related to the quality features in a first version of
the taxonomy. Then, we added to the taxonomy, as children of the leaf features, all the tags related to the metrics we
identified for such a feature.

The taxonomy is divided into two parts: externally observable features, i.e., what image users can observe, and
configuration-related features, i.e., aspects related to Dockerfiles and the build process of Docker images. The former,
mainly measured on the Docker image itself, is what the adopters of the image (i.e., artifact) immediately can see from
DockerHub or from the image metadata. The latter are mainly measured by analyzing the Dockerfile, which is what the
developers primarily see (i.e., source code), or related to the build process which involves both the Dockerfile and the
image (e.g., build time). We assigned an up or down arrow to report, for each metric, if it is positively or negatively
correlated to the measured feature.

3.2 Taxonomy ofQuality Features and Metrics

The resulting taxonomy is described in Fig. 2. The boxes with italicized text indicate the features, while the others
indicate categories of features we introduced in the taxonomy. Also, in Table 2, we report the quality metrics and the
papers resulting from the literature review. The numbers in the circular badges, instead, indicate the number of papers
that use the feature. Next, we describe the categories we identified for both configuration and external features.

3.2.1 Configuration-Related Features. Configuration features are all the features related to the Dockerfiles behind the
Docker images and the build procedure which involves both the artifacts. Such features are not directly perceived by
the users of a Docker image, similar to how internal code quality aspects (e.g., the maintainability of a software system)
are not directly perceived by the end users. However, they are important for the Dockerfile developers, and they might
eventually impact some of the externally observable features which are, instead, directly perceived by the users. We
identified the following categories:

Build.With this category, we indicate the aspects related to the build process of the Dockerfile. A slow build, for
example, increases the time needed to update the software in production if continuous deployment is adopted. The
Effort feature represents the resources involved in the build process (e.g., time) [41], while the Status feature indicates
the success or failure of the build process (i.e., if Docker image builds or not) [35].

Evolution. This category embraces the aspects that are related to the evolution of the Dockerfile. The Code

Contributions feature indicates the modifications made to the Dockerfile in time. The Project Activity feature, instead,
describes the aspects related to the development process, such as team composition. Large development teams may be
better at writing good quality Dockerfiles (i.e., more technical knowledge) [34].

Script Quality. This category contains all the features strictly related to the quality of the source code. The feature
Violation of Best Practices represents the presence of Dockerfile smells [34]. The feature Dockerfile Size represents the
aspects related to the size of a Dockerfile, such as the number of lines of code. The Instruction Diversity feature is
related to the homogeneity of the source code: A more heterogeneous code (i.e., source code that has many different
instructions) can lead to misleading developers [41]. The External Resources feature regards the usage of resources
not provided in the original project repository, such as libraries or other files downloaded from remote servers [41].
The feature Metadata describes the use of meta-data in the Dockerfile, such as environment variables or the LABEL
instruction [41]. Finally, the feature Documentation describes the use of documentation in the Dockerfile [41]. Code
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comments are an example of documentation. If the script quality of the Dockerfile is low, it is intuitively more likely
that different kinds of issues arise (e.g., security-related) given the lower maintainability [20, 34].

Update Status. This last category contains the features that are related to the maintenance status of a Dockerfile.
The feature Base Image captures the update status of the Docker image used as a base of the Dockerfile. On the other
hand, the feature Dependencies is about the updated status of additional software packages used in the Dockerfile. If a
Dockerfile is not maintained, it is more likely that some of the dependencies are out-of-date, and this might negatively
impact the security of the whole image.

3.2.2 Externally Observable Features. The external features are related to Docker images, the software artifacts that
derive from a Dockerfile after the build process. Such aspects might be directly perceived by developers who use the
image if, for example, they adopt it as a base image. We identified the following categories of features:

Officiality. With this first category, we indicate the degree of officiality of the image or of the developer(s) who
published it. It is reasonable to assume that official images, or images published by trusted developers, are perceived
better by developers because they are preferred over unofficial ones [10].

Performance. The way in which Docker images use the available resources might be crucial for developers since it
also impacts the cost of operation. Image Size, specifically, is the only relevant feature related to this category, and it
indicates the storage needed to use the image. Developers tend to dislike images bigger than necessary (e.g., if they
contain unnecessary software packages) [20].

Security. We include, in this last category, all the security-related aspects of a Docker image. The Best Practice
feature concerns the adoption of the main security best practices of a Docker image. An example of best practice in
terms of security is the usage of a user different from root, as the default user, when the image is executed. The Inherited
Vulnerabilities and Packages Vulnerabilities features are related to the number of security vulnerabilities found in the
image based on the Common Vulnerabilities and Exposures (CVE) database. The first one only concerns the parent image
of the actual Docker image (i.e., the base image used in the Dockerfile), while the second one concerns the additional
software installed in the image. Developers must prefer images that provide all the necessary security-related features,
to avoid security risks [21, 24].

3.2.3 Metrics. Table 2 describes in detail the metrics defined in our taxonomy and the features that they aim at
capturing. While most of them were already defined in the papers we analyzed, we introduced some new metrics and
variations of existing ones to better measure some of the features that compose our taxonomy. We describe below only
the differences with respect to the existing ones, which are summarized in Table 2.

Configuration-related features. We introduced Num. of docker instructions, a new metric for measuring the Size of
a Dockerfile. Such a metric counts the number of Docker instructions in the Dockerfile. Since each instruction of a
Dockerfile will be converted to an image layer, a Dockerfile having many instructions will generally have a higher
number of layers. It is worth noting that the number of instructions might be lower than the LOCs since a single
instruction might encompass many lines. For the feature Metadata, we defined two more metrics: Usage of ENV , which
measures the number of environment variables used in the Dockerfile, and Usage of build ARG, which measures the
number of build arguments. Such metrics are inspired by Usage of LABEL [41], which indicates the presence of the
LABEL instruction in Dockerfiles. The metrics Perc. of comments over LOC and Usage of EXPOSE are additional measures
for the Documentation feature. The first one is a variation of a metric defined by Zhang et al. [41]: While the original
version measures the absolute number of comments, our metric computes the percentage ratio between the number of
comments and LOC. It is expected that the ratio, more than the absolute number of comments, is important to determine
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Fig. 3. Dataset extraction procedure. The labels at the bottom show the number of selected instances up to that step.
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to what extent the Dockerfile is well-documented. Usually, developers tend to give an explanation comment of what
each instruction does [3]. The last metric we introduced, i.e., Usage of EXPOSE, is boolean, and it checks the presence of
the EXPOSE instruction. Such an instruction has the purpose of documenting the ports to be used when the Docker
container will be executed16.

Externally observable features. We defined two new metrics for the Security/Best Practices feature, i.e., Image user

is root and Num. of exposed secrets. Image user is root is a binary metric that indicates whether the principal user of the
image is root or not: A good security practice, indeed, is to use containers for which the main user does not have root
privileges (i.e., non-root user). Num. of exposed secrets measures the estimated number of secrets (e.g., passwords or
private keys) stored in the image: A good security practice is to avoid exposing sensitive data [30]. Therefore, the lower
such a metric, the higher the security.

4 EXPLAINING DEVELOPERS’ PREFERENCES

Software revdevelopers implicitly or explicitly express their preferences on Dockerfiles in several ways. They can do it
explicitly, by starring the Docker image on DockerHub, or implicitly, by adopting the image in their own Dockerfiles. In
both cases, we hypotize that the external features we identified from the literature in the previous section influence the
developers’ preferences. Specifically, we formulate the following hypoteses:

Hypotesis 1. Developers prefer images with fewer security issues.

We expect that developers are, to some extent, aware of the security issues of the images they use and, therefore, they
prefer alternatives that do not have security issues (or that, in general, have fewer of them).

Hypotesis 2. Developers prefer smaller images.

We expect that developers prefer Docker images that, by offering the same features (i.e., installed software and
dependencies), use a lower amount of space.

16https://docs.docker.com/engine/reference/builder/#expose
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Hypotesis 3. Developers prefer official images.

We expect that developers prefer official images over non-official ones since they are guaranteed to provide a minimum
quality level.

We also hypotize that configuration features related to the Dockerfiles influence external features. Developers that use
Docker images do not directly perceive configuration features (e.g., they are not aware of the LOCs of the Dockerfile).
Therefore, we assume that configuration features only have an indirect influence on the developers’ preferences.
Specifically, we formulate the following hypoteses:

Hypotesis 4. The number of layers and the adoption of bad practices increase the size of a Docker image.

We expect that features related to the build effort and script quality are correlated with an increase in the final Docker
image size on disk. The composition of a Docker image (i.e., layers) is directly related to the build effort in terms of
resource usage. Fewer layers might be related to both less build latency and less storage used. Besides, we expect that
a Dockerfile written following best practices can produce a more optimized in terms of resources since some best
practices are precisely aimed at this.

Hypotesis 5. The complexity of a Docker image and bad practices in its development process increase the number
of security issues.

A complex Docker image might result in low Dockerfile quality. Thus, we expect that a more complex Docker image
leads to a higher number of security issues (among other issues), as it has been observed for normal source code [22].
Complexity metrics are related to the presence of security vulnerabilities, together with the developers’ activity
(e.g., team size) [29]. Thus, we also expect that bad practices in the development process can increase security risks in
the Docker images.

We do not formulate hypoteses regarding the officiality of the Docker image since the process behind the assignment
of the “official image” badge is well-known7.

5 EMPIRICAL STUDY DESIGN

The goal of the study is to understand which external features directly influence the developers’ preferences and
which configuration features indirectly do so (by directly influencing external features). The context consists in 2,441
open-source Docker images used as base images for 10 software applications hosted on GitHub, and on 299 Dockerfiles
manually associated to a sample of Docker images from 2,441.

Our study is steered by the following research questions:

RQ1: Can the externally observable features explain the developers’ preference for a Docker image? With this first
research question, we want to know what external features, i.e., those related to the Docker image, allow to
explain the adoption and the preference expressed by the developers in terms of adoptions (how many times
a Docker image is used as a base image in Dockerfiles) and perceived quality (prominence measured as the
number of stars on DockerHub). This research question will allow to verify or disprove hypoteses 1, 2, and 3.

RQ2: Are configuration-related features correlated with externally observable features for Docker images? With the
second research question, we want to understand which configuration features directly influence the external
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features of a Docker image and, thus, indirectly influence the developers’ preferences. This research question
will allow to verify or disprove hypoteses 4 and 5.

5.1 Data Collection

The context of our study is composed of objects, i.e., Docker images and their related Dockerfiles. In our study, we built
two distinct datasets from the open-source codebase: Dimg and Dsrc. Dimg is composed of 2,441 instances of Docker
images, associated with the respective number of adoption and the number of DockerHub stars. Dsrc contains a subset
of the images from Dimg (299) manually associated with the Dockerfiles used to build them. We use Dimg for answering
RQ1 and Dsrc for RQ2. The procedure we used for building such datasets is summarized in Fig. 3 and detailed below.

5.1.1 Dataset of Docker Images and Developers’ Preferences (Dimg).

Mining Adoptions of Docker images. Our main objective with Dimg is to annotate a set of Docker Images with their
number of adoptions in downstream Dockerfiles and DockerHub stars. While the latter can be easily achieved by using
DockerHub APIs, the former requires mining existing software repositories. To do this, we use GHSearch [6], which
crawls data from open-spurce software projects hosted on GitHub providing metadata and statistics such as commits,
contributors, stargazers and the other information related to the repository. We extracted the metadata for GitHub
project repositories, as provided by the tool, starting from the date when Docker is introduced, i.e., 2013, to January
2022. Next, we selected only the repositories where "Dockerfile" is among the language used to exclude projects that do
not use Docker. As a result, we obtained a total of 50,487 projects. Then, we collected all the Dockerfiles from such
projects (182,375, in total) and we extracted their content at the latest snapshot. We parse the Dockerfiles obtained, and
we extract all the base images used (i.e., the ones which follow the FROM instructions). As a result, we obtained a list of
base images used. Finally, we get the unique images, and we count, for each of them, how many times they occurred.
The final result is a set of 20,425 Docker images used as base images associated with the respective number of adoption
(i.e., how many times they appear in the FROM instructions).

Annotating Docker Images with Application. Besides having the number of adoption for the collected Docker Images,
we also want to annotate them with the software they provide and its version. This is necessary because, to answer
RQ1, we will need to group together all the images providing the same features and explain the developers’ preferences
among them, rather than among images providing different features. Indeed, let us imagine that we have two Docker
images providing an Apache HTTP server, with 1,000 and 900 adoptions, respectively, and an image providing Nginx,
with 2,000 adoptions. We do not know whether the higher number of adoptions is due to the fact that developers prefer
the Docker image providing Nginx or they simply prefer Nginx. In other words, the number of adoptions between the
two images providing Apache HTTP is comparable and might depend on the differences between the images, while the
number of adoptions of the image providing Nginx can not be mixed with the others. The same is true for different
versions of the same software: Developers might prefer a given version of Apache HTTP and base the choice on it
rather than on the non-functional aspects of the Docker image. Therefore, we assigned each image with an application

name (e.g., “Tomcat”) and an application version (e.g., 7.0). To do this, we use a semi-automatic procedure. First, we
removed all the instances where the Docker image repository name contains special characters that are not allowed by
the Docker naming convention (i.e., non-alphanumeric symbols or placeholders). Thus, from a total of 182,375 instances,
we retain 141,583 of them. Next, we extracted the words contained in the image names by performing a string split over
the separators (i.e., dash or underscore). For example, from alpine-maven-builder-jdk-8, we extract the words alpine,
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maven, builder, jdk and 8. The next step is to select, among all the obtained words, only those that are alphabetic (i.e.,
do not contain symbols or numbers) and contain at least 3 characters. We do this to discard words that are not useful.
Examples are go, os, js as we select Docker images containing applications and not OSs and programming languages.
We selected all the words appearing in at least five image names, and we obtained a total of 338 unique words. Each of
the selected words is a candidate application name. We discard word (i.e., candidate applications) with less than five
occurrences to avoid having too small groups for the analysis performed in RQ1 and include software that is provided
through a limited number of Docker images.

Next, we selected and assigned a set of tags (i.e., clusters) to group each base image of our dataset by the contained
application. For example, we assign the label tomcat to all the images that provide the tomcat web server. We used the
dataset of Docker images obtained in the previous step to achieve this. At this point, a manual process is required to
identify if a word corresponds to an application name to group similar Docker images (i.e., clustering). This is done by
manual annotation of all the extracted words that occur at least 5 times, i.e., there are at least 5 unique Docker images
containing those words, for a total of 338. Then, we manually check the candidate application names, and we select only
the ones that are actual applications. We discard operating systems/Linux distributions (e.g., ubuntu, debian, alpine),
programming languages (e.g., python, java), and other commonly used words which do not pertain the application
(e.g., build, base, dev, runtime, aws, platform). Examples of valid words we selected are nginx, maven, jenkins, chrome,
dotnet, envoy, mysql. In some cases, different words could refer to the same application (e.g., postgres and postgresql).
In such cases, we manually created clusters of names and associated them with a unique name (e.g., postgres, in the
previous example). As a result, we obtain a total of 73 different applications associated with all names through which
they appear in the Docker images. Finally, we associated each Docker image with a list of applications it provides by
simply performing string matching with the words analyzed in the previous step. If a Docker image was associated
with no application, we discarded it. This happened, for example, for Docker images providing Linux distributions,
as previously explained. We manually analyzed cases in which a Docker image was associated with more than an
application, and discarded the cases in which more than an application was actually provided. After this step, we obtain
our final dataset of 2,776 Docker images (covering a total of 12,674 adoptions). We also annotate each image with the
version of the application provided. To do this, we split the Docker image name as previously done to identify the
application name, and we select the word with the highest number of numeric characters. We manually check if the
version assigned to each image was correct.

Feature Extraction. We added to the dataset all the features needed to answer our research questions. Firstly, for
each Docker image, we extracted the number of stargazers (i.e., stars) by using the DockerHub APIs17, to compute
the perceived quality (i.e., the prominence of a Docker image over the others, used as a dependent variable for RQ1).
We computed most of the metrics related to the external features from the literature we identified in Section 3.2, with
some exceptions and small variations. We describe below only such cases. We did not consider the metric Presence of
temporary files smell, because it can not be exactly measured automatically but only with a semi-automatic approach,
as described in the reference article [23]. Moreover, we merged the metrics for the feature Inherited Vulnerabilities and
Packages Vulnerabilities in Num. of vulnerabilities. We did this because, given a Docker image, we could not distinguish
the layers inherited from the base images (i.e., parent) and the additional layer added on top of them with the specific
Dockerfile used, since we do not have such a Dockerfile in Dimg. To compute the Num. of vulnerabilities, we used the
Clair tool. For the metrics in the category Security/Best Practices, we adopt the Whaler tool, which returns Image user is

17https://docs.docker.com/docker-hub/api/latest/
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root and Num. of exposed secrets. To measure the Officiality feature, we implemented a web scraper to parse the presence
of the label “Official Image” on DockerHub.

Table 3. Summary of the selected applications and sampled instances from the dataset.

Application Instances Sample

Nginx 344 78
Cuda 229 52
Maven 177 40
Tomcat 147 33
Postgres 143 32
Redis 79 18
Elasticsearch 65 15
MySQL 65 15
fluentd 58 13
Dotnet 12 3
Total 1,319 299

5.1.2 Dataset of Dockerfiles associated with Docker Images (Dsrc). To perform the analysis required in the context
of RQ2, we need to have, for each Docker image, the source Dockerfile. Thus, we defined a second dataset, namely
Dsrc, which contains a subset of the Docker images from Dimg, in which each instance contains the content of the
Dockerfile used to build it. To achieve this, we first randomly extracted a sample of Dimg for the applications with the
highest number of Docker images. We filtered Dimg and selected only the Docker images for such selected applications
obtaining a total of 299 instances. Manually annotating the Dockerfile from a Docker image is challenging: In most
cases, a direct link to the Dockerfile is missing. Thus, we performed a random sampling selecting 299 total instances
with a confidence level of 95% and 5% margin of error. Finally, we manually annotated the Dockerfiles related to each
remaining Docker image. To achieve this, for each image, we looked at the DockerHub repository. If there was a direct
reference to the Dockerfile, we assumed it was the one used to build it. Otherwise, we performed a Google search using
the name of the image plus the word “Dockerfile” (e.g., nginx Dockerfile) looking for the source of the Dockerfile related
to that image. If we obtained no results, we replaced the Docker image with another randomly selected, for the same
application, to avoid hampering the representativeness of our sample. We report in Table 3 the total number of selected
applications and the sampled number of instances, i.e., the different groups of comparable Docker images and their
number, involved in our experiment. In detail, we have 10 different groups having a number of Docker images varying
from 12 (dotnet) to 344 (nginx). We have a total number of 2,441 open-source Docker images, and for a subset of them
(299) we also have the source Dockerfile from open-source codebases..

Also in this case, we computed on Dsrc all the metrics related to the configuration features that were reported in
Section 3.2, with some exceptions and small variations. We describe below only such cases. We excluded from the
metrics related to the feature Update Status because we could not have a reliable measure for the metrics Is base image

up-to-date and Num. of out-of-date dependencies. The update status of the base image and the package dependencies,
indeed, depends on the time at which the adoption was made in the downstream Dockerfiles, and it changes over
time. We cannot trace back the time at which one or more dependencies (possibly) became out-of-date in a Docker
image and, thus, report if it was so at the time of adoption. Also, we do not compute the metric Evolutionary trajectories

category [41]. This is because, in the original study, the authors show that this measure correlates with the build latency
16
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and the number of best practice violations, which we directly compute (i.e., Build time, Num. of docker smells, and Num.

of shell script smells). For the metrics of the category Script Quality, we use the Hadolint tool to detect violations of best
practices. For the other metrics, we use a modified version of the parser from the replication package of the analysis
conducted by Schermann et al. [28]. Specifically, we added the extraction of code comments, as their parser does not
retrieve them. For the metric of the Project Activity feature, we use the tool PyDriller to extract data from the source
repository of each Dockerfile. For the Build category, we use the Python Docker wrapper18 to build the Dockerfiles and
measure their build time.

5.2 Experimental Procedure

This section details the experimental procedure we follow to answer our research questions.

5.2.1 RQ1: Can the externally observable features explain the developers’ preference for a Docker image? To answer RQ1,
we extract the external metrics described in our taxonomy (Fig. 2) on the dataset Dimg. We removed all the instances
with invalid metrics values (e.g., Clair scanner fails on some Docker images), obtaining a total of 2,441 valid instances
for the analysis. Next, to evaluate what are the external features that affect the developer preferences for a Docker
image, we build two mixed-effect generalized linear models [9]. In detail, we use the lmer function from the R library
lmerTest. Each instance of the dataset contains the value of the metrics for the external features, the application name
and version, the number of adoptions, and the number of DockerHub stars. We use as random effects the application
name and version. We use as random effects the application name and version. In this way, different Docker images
regarding the same application at the same version, are considered in the same group. We do this because we want to
take into account the fact that developers might have different levels of preferences for Docker images that provide
different software applications, based on the characteristics of the applications themselves, regardless of the other
image-related factors evaluated in our study. For example, the images jdk-8-alpine and jdk-8-slim will be in the
same group, while jdk-9-slim and jre-8-slim will belong to other groups. The dependent variables, or outcomes,
are the following:

• Number of adoptions: the actual usage in software repositories of a Docker image (i.e., objective preference),
measured as the occurrences of a specific Docker image (i.e., name and tag) in user-defined Dockerfiles (as
reported before);

• Number of DockerHub stars: the number of stars of a Docker image reported on DockerHub. This measures
the prominence of a Docker image over others expressed by the developers. The number of adoptions and the
number of stars tend to be directly proportional (𝑟𝑠 = 0.23, p-value < 0.05).

The independent variables (fixed effects in the model) are the following:

• Image size: the storage size of a Docker image, measured in bytes;
• Num. of layers: the total count of layers that compose a Docker image;
• Num. of vulnerabilities: the overall number of detected security vulnerabilities from a Docker image. All the

vulnerabilities are considered (i.e., from both parent and current image layers);
• Image user is root: whether the docker image uses the root account as the primary user;
• Num. of exposed secrets: total number of exposed secrets (i.e., sensitive data) detected in the Docker image;

18https://pypi.org/project/docker/
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• Is official: the image is part of the Docker official images program, thus maintained following the official Docker
guidelines.

All the independent variables refer to the external features described in Section 3.2. Before we performed the regression
analysis, we applied some transformations to our dataset. First, we perform a correlation analysis to remove the highly
correlated variables using a threshold of 𝑟𝑠 > 0.90. None of the variables have been removed as their correlation
coefficient remains below the threshold. Next, we computed the skewness coefficient of the distribution of all the
variables. To normalize skewed distributions, we apply a logarithmic transformation to both dependent and independent
variables (i.e., log(𝑥 + 1) since they are all non-negative. In our case, all the variable distributions are skewed (the
lowest skewness value is 1.8, where a coefficient close to 0 means that the distribution is not skewed). Moreover, we
apply a min-max normalization to fix the variables on the same scale. As a result of our analysis, for each variable of
our model, we report the significance value (i.e., p-value), the standard error, the coefficients, and the polarity of the
relationship of that coefficients. We consider a coefficient important for determining the developers’ preferences if
it is statistically significant, i.e., p-value < 0.05. To evaluate the model fit, we report the adjusted 𝑅2, using the rsq R
package. It describes the variation explained by the model. Moreover, we report the effect size, expressed by measuring
the Pearson correlation coefficient between pairs of independent and dependent variables [7] for the cases in which the
relation, reported by the model, is statistically significant (i.e., p-value < 0.05). We also report Cohen’s 𝑑 effect size
magnitude, obtained from Pearson’s 𝑟 by using the formula 𝑑 = 2∗𝑟√

1−𝑟 2
[27].

5.2.2 RQ2: Are configuration-related features correlated with externally observable features for Docker images? To answer
RQ2, we compute the metrics related to the configuration features of our second dataset, i.e., Dsrc. To perform the
regression analysis on Dsrc, we built three mixed-effect generalized linear models. To explain how the external features
are affected by the configuration features, we build a model for three of the external factors analyzed in RQ1, as
dependent variables, i.e., Image size, Num. of vulnerabilities, Num. of exposed secrets. We exclude from our regression
modeling the external features Is official and Image user is root because the former is not an objective measure that
depends on a set of non-quantifiable aspects, i.e., is assigned by a team of Docker reviewers based on the official
guidelines7 and the latter can be directly controlled by the developer by adding a specific line of code. Also in this
case, we consider the application name and version as a random effect. The independent variables (fixed effects in our
models) are the metrics for the configuration features computed on the selected sample of Docker images (i.e., Dsrc). In
detail, the independent variables are the following:

• Num. of docker smells: number of best practice violations for Dockerfiles, extracted using the tool hadolint;
• Num. of shell script smells: number of best practice violations for shell script code used in Dockerfiles, extracted

using the tool hadolint;
• SLOC: the total number of source lines of code (i.e., without code comments and blank lines) in the Dockerfile;
• Layer size: the average number of commands executed in a single instruction block, to measure how much they

are nested (i.e., a proxy for the source code complexity);
• Num. of docker instructions: number of the used Docker instructions (e.g., RUN, FROM, etc.) used in the Dockerfile;
• Instructions entropy: the Shannon entropy computed using the different Docker instructions used in the Docker-

file, as a measure for its complexity (i.e., heterogeneity of the Dockerfile).;
• Usage of additional script: boolean flag that indicates whether or not the Dockerfile uses additional shell scripts,

i.e., it executes external scripts during the build of the Docker image;
18
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• Usage of external resources: boolean flag that indicates whether or not the Dockerfile uses external resources,
i.e., it fetches additional data from remote sources (i.e., URLs) during the build of the Docker image;

• Usage of ENV : boolean flag that indicates whether or not the Dockerfile uses environment variables, i.e.,
identified by the instruction ENV;

• Usage of build ARG: boolean flag that indicates whether or not the Dockerfile uses build args, i.e., identified by
the instruction ARG;

• Project age: the age of the repositories that the Dockerfile belongs to, measured in seconds elapsed between the
first and the last commit;

• Num. of layers: the number of layers that compose the Docker image, measured after the Dockerfile build;

Based on our hypotheses reported in Section 4, we define a model for each dependent variable, based on what
we reasonably expect to impact each external feature. Specifically, for the outcome Num. of exposed secrets, we have
as independent variables Num. of docker smells, Num. of shell script smells, Instructions entropy, Usage of additional
script, Usage of external resources, Usage of ENV , and Usage of build ARG. For the outcome Num. of vulnerabilities

we use as independent variables: Num. of docker smells, Num. of shell script smells, SLOC, Usage of additional script,
Usage of external resources, Usage of ENV , Project age, and Num. of layers. Finally, for the outcome Image size, we have
as independent variables: SLOC, Num. of docker instructions, Layer size, Usage of additional script, Usage of external
resources, and Num. of layers.

We perform the same preprocessing steps done for answering RQ1. First, we performed a correlation analysis to
remove highly correlated variables (threshold of 𝑟𝑠 > 0.90), but none were removed. Next, we evaluate the skewness
coefficient. To normalize skewed distributions, we apply both square root and log transformations. In particular, we
apply the log-transformation on the higher skewed distributions (skewness ≥ 1.8, i.e., the metric Num. of exposed secrets),
while the square root on the less skewed ones (skewness < 1.8). After this, we apply the min-max normalization to all
of our variables. For each of our models, we compute the p-value, the standard error, the coefficients, and the polarity of
the relationship of the coefficients with the dependent variable (i.e., positive or negative). We consider a coefficient
important for the dependent variable if the significance, i.e., p-value, is statistically significant (p-value < 0.05). As in
the previous RQ, we compute the adjusted 𝑅2 for each model, the effect size reported as Pearson’s 𝑟 between pairs of
independent and dependent variables [7] and Cohen’s 𝑑 magnitude obtained from the correlation coefficient [27]. We do
not report the results for all such models in the paper for readability reasons, but we discuss the main results, focusing
on the relevant relationships we found. The detailed results are publicly available in our replication package [26].

5.3 Replication Package

Both the datasets (Dimg and Dsrc), along with the scripts we used to answer both our research questions, are publicly
available in our replication package [26].

6 EMPIRICAL STUDY RESULTS

In this section, we report the results of our empirical study. Fig. 4 reports a summary of the relationships we found among
configuration-related features and externally observable features, and then among external features and developers’
preferences based on the results obtained from the two RQs. Connections indicate that the left-hand variable is significant
in the model for explaining the right-hand variable. The size of the arrow represents the magnitude of the effect size
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Fig. 4. Descriptive plot of the relation between configuration-related features, externally observable features, and preferences for
Docker applications. The size of the arrow indicates the effect size magnitude (i.e., very small, small, medium, or large). The polarity
of the relationship is reported with plus (positive) and minus (negative) signs.

Project age

Number of shell 
script smells

SLOC

Usage of
additional script

Number of 
layers

Instructions 
entropy

Image user 
is ROOT

Number of
vulnerabilities

Number of
exposed secrets

Image size

Is official

Number of
DockerHub stars

Number of
adoptions

(i.e., very small, small, medium, or high). The polarity of the relation is reported through a plus (positive) or minus
(negative) sign.

6.1 RQ1: Can the externally observable features explain the developers’ preference for a Docker image?

We report in Table 4 the results of the performed regression modeling to explain the preferences for Docker images
in terms of the number of adoptions and number of DockerHub stars, along with the Pearson’s correlation between
independent and dependent variables Corr. Coeff, and the effect size magnitude (i.e., from Cohen’s 𝑑). The variables Num.

of exposed secrets and Is official are the most significant ones for the number of adoption, with a p-value < 0.001. That
means developers tend to adopt official images, i.e., images that follow the Docker official images program guidelines.
This is also true when considering the number of DockerHub stars as a dependent variable. This can be a consequence
of the fact that they have few exposed secrets with a lower number of vulnerabilities (Fig. 5). The metric Image user is

root is not statistically significant for the outcome Number of adoptions. This means that it does not influence the usage
of a Docker image. On the other hand, it is significant for the outcome Number of DockerHub stars with a negative
relation. This means that image users prefer images where the main account is not root. Fig. 5 shows the relation
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Fig. 5. Descriptive plot of the relationship between dependent and independent variables for the regression modeling of RQ1.

between each independent and dependent variable involved in RQ1. We use boxplots for binary variables and scatter
plots for continuous ones. We have an overall inverse relation between independent variables and outcomes, the higher
the adoptions, the lower the external features of the Docker images. We computed the Spearman correlation between
dependent and independent variables. The number of stars has a negative correlation with Image size and a positive
one with the metric Is official. This means that the developers prefer smaller images having the official image label. A
heatmap with the correlation values can be found in our replication package [26].
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Table 4. Mixed-effects models obtained for explaining developers’ preferences through external factors. The columns Corr. Coeff and
Effect Size report the value of Pearson’s 𝑟 and Cohen’s 𝑑 magnitude, respectively.

Variable Estimate p-value Corr. Coeff. Effect Size Rel.

#
ad

op
ti
on

s Image size -0.0476 0.0274 -0.09 very small ↘
Num. of vulnerabilities -0.0047 0.6696 - -
Image user is root 0.0096 0.2644 - -
Num. of exposed secrets -0.0538 0.0008 -0.07 very small ↘
Is official 0.0904 < 0.0001 0.16 small ↗

#
st
ar
s

Image size -0.0937 0.0044 -0.26 medium ↘
Num. of vulnerabilities -0.0768 < 0.0001 -0.16 small ↘
Image user is root -0.0346 0.0104 0.12 small ↘
Num. of exposed secrets -0.1021 < 0.0001 -0.11 small ↘
Is official 0.6014 < 0.0001 0.66 large ↗

The adjusted 𝑅2 for the two models are 0.18 (weak effect size) for the outcome Number of adoptions, and 0.74 (strong
effect size) for the outcome Number of DockerHub stars. This shows that the external factors we considered are sufficient
to explain the prominence of a Docker image over others expressed by developers. However, they are not enough
to explain the actual adoptions. There could be other factors, still not investigated in the literature, that might help
understand how developers choose the base images for their Dockerfiles.

Summary of RQ1. Developers’ perceived ( i.e., prominence expressed in terms of DockerHub stars) and actual (in terms

of adoptions) preferences can be explained by the image officiality-, security-, and size-related metrics. However, such

metrics are much more effective in explaining the perceived preferences than the actual ones.

6.2 RQ2: Are configuration-related features correlated with externally observable features for Docker
images?

We computed the Spearman correlation computed between configuration and external features of Docker applications.
The highest correlation obtained is 0.75, between Image size with Num. of layers. When compared to Layer size, we
have a negative correlation of −0.51. This means that large images have many layers that perform few actions, while in
smaller images the number of layers is low and the number of actions performed is high. We also observe a negative
correlation (𝑟𝑠 = −0.28) between Usage of build ARG and Num. of exposed secrets: This is reasonable since developers
might use build arguments to pass secrets (e.g., passwords or keys) instead of having them hard-coded in the Dockerfiles
themselves. A heatmap with the correlation values can be found in our replication package [26].

When combining such metrics in the three models we investigated, first, we found that the number of exposed
secrets in the Docker image (Num. of exposed secrets) is higher when the Dockerfile uses additional scripts (Usage of
additional script) and has a lower number of shell smells (Num. of shell script smells). The latter can be counter-intuitive.
This is because if there are additional scripts, external to the Dockerfile, it is likely that the shell-script code is in them
instead of inside the Dockerfile. Moreover, it is unlikely that shell-script smells can expose secrets in Docker images.
The adjusted 𝑅2 for such a model is 0.40 (weak effect size). We also observed that vulnerabilities (Num. of vulnerabilities)
occur more frequently in older projects (Project age), when Dockerfiles are bigger (SLOC), they use additional scripts
(Usage of additional script), and they have more shell-script smells (Num. of shell script smells). The adjusted 𝑅2 for such
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Fig. 6. Descriptive plot of the relation between dependent and independent variables for the regression modeling conducted in RQ2.
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a model is 0.24 (weak effect size). Finally, our results show that the image size highly depends on the number of layers
(Num. of layers), as previously observed with the simple correlations. Similarly, the size is higher when the Dockerfile
uses additional scripts (Usage of additional script) and fewer lines of code (SLOC). It is important to keep in mind that
the size of a Docker image mainly depends on the number of layers and the base image used. For example, a Dockerfile
that uses as base image the nginx web server, probably mainly performs the copy and the setup of the application to be
contained. The adjusted 𝑅2 is 0.76 (strong effect size). The detailed results of the models we built for RQ2 are available
in our replication package [26].

In summary, we observed that some configuration-related features have a significant role in explaining the external
features we analyzed. In general, developers should keep the SLOC low to have benefits in terms of size and security.
It is important to say that not all the lines of code (i.e., instructions) have a direct impact on the image size (e.g., the
removal of non-functional instructions like EXPOSE). Similarly, developers should pay attention to the Num. of layers,
which can negatively impact the size. Finally, the use of additional shell scripts should be discouraged since it has a
negative impact on both the security (Num. of exposed secrets and Num. of vulnerabilities) and size (Image size). Also in
this case there are exceptions, i.e., not all the shell script smells directly lead to security issues.

Summary of RQ2. Some configuration-related features have a significant role in explaining the security and the size of

Docker images. Developers should keep SLOC and Num. of layers low and they should avoid using external shell scripts.

6.3 Discussion

From the results of our study, we can extract several hints that benefit both researchers and developers interested in
improving the quality of their Docker images. The general picture is described in Fig. 4, which summarizes the outcome
of the regression modeling for both RQs. We observed that Docker images having the highest number of adoptions
have a small storage size and a low number of layers. Also, the number of exposed secrets is low, along with a low
number of shell script smells, also avoiding the usage of additional scripts. The number of SLOC has to be low, along
with the heterogeneity of instructions (i.e., entropy).

The officiality of the image is actually the strongest factor explaining the preference for Docker images, impacting
both adoptions and stargazers count. For the latter, in addition to the features mentioned above, we have that image
users prefer images with less number of vulnerabilities, where the main user of the image is not root. It is interesting to
note that the number of vulnerabilities is positively affected by the repository age of the Dockerfile. This means, and
confirms, that Dockerfiles must be actively maintained and updated to lower the presence of security vulnerabilities in
the resulting images [30].

Also, the correlations found in our experiment are not strong for the specific metrics and features. Most likely, this
happens because developers tend to pick official Docker images, with the assumption that they have the best quality
overall 19. We believe that this results from the fact that they are not aware of alternatives from the community of
that images because it is difficult for users to compare similar Docker images as their peculiarities are not clearly
highlighted [15]. An example is the debezium/postgres:11 Docker image, where the source Dockerfile has fewer
smells (i.e., 6) compared to the official postgres:11 (i.e., 13). Another example is the bitnami/nginx:1.19, an unofficial
Docker image for nginx v1.12, which has fewer security vulnerabilities (i.e., 98) compared to the official image nginx:1.19
(i.e., 188). The behavior of the developers, when they pick a Docker image, could be related to the mismatch between

19https://github.com/docker-library/official-images#what-are-official-images
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Fig. 7. Examples of Dockerfiles having different image sizes.

1 FROM openjdk:7-slim
2
3 # INSTALL REQUIREMENTS
4 RUN apt -get update
5 RUN apt -get install --no-install -recommends -y wget
6 RUN apt -get clean
7 RUN rm -rf /var/lib/apt/lists/*
8
9 # INSTALL TOMCAT
10 RUN wget http :// archive.apache.org/dist/tomcat/tomcat -7/v7 .0.69/ bin/
11 ↩→ apache -tomcat -7.0.69. tar.gz -O tomcat.tar.gz
12 RUN tar zxf tomcat.tar.gz
13 RUN rm tomcat.tar.gz
14 RUN mv apache -tomcat* tomcat
15
16 # ADD TOMCAT EXECUTABLE TO PATH
17 ENV PATH "$PATH:/ tomcat/bin"
18
19 EXPOSE 8080
20
21 CMD ["catalina.sh", "run"]

(a)

1 FROM openjdk:7-slim
2
3 # INSTALL REQUIREMENTS
4 RUN apt -get update && \
5 apt -get install --no-install -recommends -y wget && \
6 apt -get clean && \
7 rm -rf /var/lib/apt/lists/*
8
9 # INSTALL TOMCAT
10 RUN wget http :// archive.apache.org/dist/tomcat/tomcat -7/v7 .0.69/ bin/
11 ↩→ apache -tomcat -7.0.69. tar.gz -O tomcat.tar.gz && \
12 tar zxf tomcat.tar.gz && \
13 rm tomcat.tar.gz && \
14 mv apache -tomcat* tomcat
15
16 # ADD TOMCAT EXECUTABLE TO PATH
17 ENV PATH "$PATH:/ tomcat/bin"
18
19 EXPOSE 8080
20
21 CMD ["catalina.sh", "run"]

(b)

1 FROM openjdk:7-slim
2
3 # INSTALL TOMCAT
4 RUN apt -get update && \
5 apt -get install --no-install -recommends -y wget tomcat7 && \
6 apt -get clean && \
7 rm -rf /var/lib/apt/lists/*
8
9 # ADD TOMCAT EXECUTABLE TO PATH
10 ENV PATH "$PATH:/usr/share/tomcat7/bin"
11
12 EXPOSE 8080
13
14 CMD ["catalina.sh", "run"]

(c)
25
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adoptions and image preferences (i.e., prominence), where we have a Pearson correlation 𝑟 = 0.25 and medium effect
size. We believe that, for the same reason, official Docker images tend to have more stars, i.e., higher prominence
(𝑟 = 0.66 and large effect size).

We can summarize some takeouts from the results of our empirical study.
Image size is influenced by Num. of layers. Considering the results of our analysis, the number of LOC influences
the number of layers. In Fig. 7 we report three different examples to qualitatively assess this relation. We have the
Dockerfile a and a version with the number of layers reduced (i.e., Dockerfile b) maintaining the same number of lines.
Thus, if we build Dockerfile a, the resulting image will have 21 layers with a size of ~315 MB. If we build Dockerfile b,
the resulting image will have 15 layers with a size of ~282 MB.

In some cases, if a Dockerfile downloads an external package, the size of the resulting image will change independently
of the number of layers and lines of code. For example, if we consider Dockerfile b with the two RUN instructions merged,
compared to Dockerfile c where tomcat is installed using via apt-get, the resulting images will have the same number of
layers, but the size of the former is higher than the latter (282 MB vs. 277 MB). Moreover, looking at Dockerfile a and
b, it is clear that the number of layers is not related to the number of LOC but to the number of Docker instructions
However, we show an example where we modify instructions that directly impact the composition of the final image.
The same does not apply to some kind of instructions, i.e., removing instructions such as LABEL or EXPOSE. To the best
of our knowledge, there are no automated tools for the refactoring of Dockerfiles that can help to reduce the image size.
However, there is the docker-slim tool20 that does not act on the Dockerfile, but directly on the container. It creates a
slimmed-down version of the Docker container maintaining the same functionalities.

Shell scripts can be a proxy for security issues. An interesting point to discuss, resulting from our empirical
study, is the fact that the usage of shell scripts can lead to security issues. There are mainly two types of shell scripts
used in Dockerfiles: Embedded shell scripts and external shell scripts. For the former, the major issues are related to
the best practice violations detected with the hadolint. For the latter, the main issue is that the shell script is executed
in the same build context as the Docker image. In this way, it is possible to inject malicious code or access the host
file system. In general, shell script code must be written in a safe way, following best practices, and additional scripts
must be checked, or else they must come from trusted sources. It will be better to avoid copy-paste shell scripts from
random websites. An example of a best practice violation that can expose the Docker container to security issues is
the rule violation identified as SC1098, detected by the tool hadolint. The violation concerns the missing quote/escape
for special characters when using the eval command. This rule is not a security issue itself, but its violation can lead
to unpredictable outcomes from the script code. This can be exploited to inject malicious code21 Moreover, the main
proxy for security vulnerabilities is related to the update status of the Docker images, i.e., most updated images usually
have fewer security vulnerabilities, but are not exempt from them [30, 39].

Dockerfile smells do not explain the adoption of the final Docker image. In the current scientific literature,
the main measure to evaluate the quality of Docker images [5, 34] is the number of best practice violations (i.e., smells)
detected by the hadolint tool. Our results show that Dockerfile smells are not relevant for explaining any of the external
factors we considered. In other words, their impact on the developers’ preferences, when they have to choose whether
they should adopt a Docker image, is negligible. It is possible that the current catalog of smells is still not sufficiently
complete, or else only some of them are relevant for explaining the adoption of Docker images. Future work should be
aimed at finding new types of smells, more related to the impact that they have on the resulting Docker image.

20https://github.com/docker-slim/docker-slim
21https://developer.apple.com/library/archive/documentation/OpenSource/Conceptual/ShellScripting/ShellScriptSecurity/ShellScriptSecurity.html
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7 THREATS TO VALIDITY

In this section, we report the threats to the validity of our study.
Construct Validity. We use state-of-the-practice tools such as Clair and Hadolint, to compute some of the metrics

related to both external and configuration features (e.g., Num. of vulnerabilities and Num. of docker smells). To the best of
our knowledge, the effectiveness of such tools for detecting the aspect that they aim at capturing was not validated in
any previous study. However, such tools are already adopted both by developers in practice and researchers [5, 30, 34].

Internal Validity. To build our datasets we relied on the tool GHSearch, which provides all the software repositories
from GitHub having more than 10 stars. While this could have biased the results towards more popular projects, we
used this procedure to minimize the number of toy projects (e.g., students’ tests with Docker) in our datasets. While
assigning the application name and version to each Docker image, we excluded the ones that contained more than an
application name. We did this to avoid Docker images providing unique features that no other images could provide (i.e.,
not comparable in terms of the environment alone). In doing so, we discarded 205 Docker images, which is negligible.
An example of a discarded image is tiangolo/uwsgi-nginx-flask:python3.522. It is worth saying that we only
selected Docker images containing applications, so we discarded images for programming languages and OSs. Thus, we
excluded a total of 128,704. Moreover, tagging some of the common programming languages and operating systems
following the same procedure of Section 5.1, among the excluded images, we have 56,792 and 42,296, respectively. The
remaining are uncategorized. In the first study, we ran a literature review to extract a collection of quality metrics
that can impact the perceived quality of Docker images. We did not perform a Systematic Literature Review (SLR) on
Docker quality to build the taxonomy because the topic is too broad and it would have been outside the scope of this
paper. This is why we have not followed all the guidelines typically used to run a SLR [17]. As a result, we could have
unintentionally excluded from our study some metrics defined in the literature relevant four our study. However, we
still tried to minimize this by using some of the guidelines defined by Kitchenham and Brereton [17]: First, we use
precise inclusion and exclusion criteria (Table 1) to make sure we do not select irrelevant papers. Second, to enlarge the
initial set of papers we selected, we both used snowballing (to include older relevant literature) and searched for papers
that cite them (to include more recent literature).

External validity. Because of the procedure we used to build Dimg, we started from Dockerfiles of downstream
applications to define a list of Docker images to analyze. It is possible that, because of this process, we ignored some
Docker images that are not used in open-source software but are used in proprietary software, such as Oracle db23.
While it is clear that we could not have captured the number of adoptions for them without having access to a large
amount of proprietary Dockerfiles, it is true that we could have done so for the number of stars, which is always
publicly available. We decided not to have two different datasets for the two dependent variables used to answer RQ1 to
avoid obtaining incomparable results. For Dsrc, we manually looked for the Dockerfiles of a sample of Docker images
provided for the top ten applications in terms of the absolute number of Docker images available. The results of RQ2

might not generalize to all the applications we consider. Still, this procedure allowed us to cover about ~50% of the
total number of Docker image usages. It is important to clarify that our study was conducted on open-source Docker
images and Dockerfiles, and, thus, our findings should not be generalized to other contexts (e.g., industrial projects).
In addition, the results come from a correlational study, where we cannot infer causality based on the data alone. In
general, we reported practical examples to support our findings.

22https://hub.docker.com/r/tiangolo/uwsgi-nginx-flask
23https://hub.docker.com/_/oracle-database-enterprise-edition
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8 CONCLUSION AND FUTUREWORK

Containerization is widely adopted in practice, and Docker is the leading technology. There are plenty of Docker images
available in public repositories such as DockerHub, some of which provide the same software systems. It is unclear
what aspects influence developers’ preferences. In this paper, we first performed a literature review of 31 papers to
find what are the externally observable features and configuration-related features factors typically considered. As a
result, we defined a taxonomy of such features, along with the metrics typically used to measure them. Next, using such
metrics, we performed an empirical study on a dataset of 2,441 Docker images to evaluate (i) what externally observable
features impact the adoption of Docker images, and (ii) to what extent the configuration features influence external
features. Our results show that the developers prefer Docker images that are official, secure, and small in storage size.
Moreover, in terms of configuration features that are a significant impact on them, the Num. of layers must be kept low
and Usage of additional script must be avoided if possible, where also the number of Num. of shell script smells must be
low. Based on these results, future research could be aimed at defining a quantitative score for measuring the quality
level of Docker images and Dockerfiles. Such a score could allow (i) developers to choose among different alternative
Docker images, and (ii) researchers to build automated tools that take quality into account by objectively measuring it.
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