
Noname manuscript No.
(will be inserted by the editor)

Fixing Dockerfile Smells: An Empirical Study

Giovanni Rosa · Federico Zappone ·
Simone Scalabrino · Rocco Oliveto

Received: date / Accepted: date

Abstract Docker is the de facto standard for software containerization. A1

Dockerfile contains the requirements to build a Docker image containing a tar-2

get application. There are several best practice rules for writing Dockerfiles,3

but the developers do not always follow them. Violations of such practices,4

known as Dockerfile smells, can negatively impact the reliability and perfor-5

mance of Docker images. Previous studies showed that Dockerfile smells are6

widely diffused, and there is a lack of automatic tools that support developers7

in fixing them. However, it is still unclear what Dockerfile smells get fixed by8

developers and to what extent developers would be willing to fix smells in the9

first place. The aim of our study is twofold. First, we want to understand what10

Dockerfiles smells receive more attention from developers, i.e., are fixed more11

frequently in the history of open-source projects. Second, we want to check if12

developers are willing to accept changes aimed at fixing Dockerfile smells (e.g.,13

generated by an automated tool), to understand if they care about them. We14

evaluated the survivability of Dockerfile smells from a total of 53,456 unique15

Dockerfiles, where we manually validated a large sample of smell-removing16

commits to understand (i) if developers performed the change with the inten-17

tion of removing bad practices, and (ii) if they were aware of the removed smell.18

G. Rosa
STAKE Lab, University of Molise, Italy
E-mail: giovanni.rosa@unimol.it

F. Zappone
STAKE Lab, University of Molise, Italy
E-mail: f.zappone1@studenti.unimol.it

S. Scalabrino
STAKE Lab, University of Molise, Italy
E-mail: simone.scalabrino@unimol.it

R. Oliveto
STAKE Lab, University of Molise, Italy
E-mail: rocco.oliveto@unimol.it

2 Giovanni Rosa et al.

In the second part, we used a rule-based tool to automatically fix Dockerfile1

smells. Then, we proposed such fixes to developers via pull requests. Finally,2

we quantitatively and qualitatively evaluated the outcome after a monitoring3

period of more than 7 months. The results of our study showed that most de-4

velopers pay more attention to changes aimed at improving the performance5

of Dockerfiles (image size and build time). Moreover, they are willing to ac-6

cept the fixes for the most common smells, with some exceptions (e.g., missing7

version pinning for OS packages).8

Keywords dockerfile smells · empirical software engineering · software9

evolution10

1 Introduction11

Software systems are developed to be deployed and used. Operating software12

in a production environment, however, entails several challenges. Among the13

others, it is very important to make sure that the software system behaves14

exactly as in a development environment. Virtualization and, above all, con-15

tainerization technologies are increasingly being used to ensure that such a16

requirement is met1. Among the others, Docker2 is one of the most popular17

platforms used in the DevOps workflow: It is the main containerization frame-18

work in the open-source community [6], and is widely used by professional19

developers3. Also, Docker is the most loved and most wanted platform in20

the 2021 StackOverflow survey3. Docker allows releasing applications together21

with their dependencies through containers (i.e., virtual environments) shar-22

ing the host operating system kernel. Each Docker image is defined through a23

Dockerfile, which contains instructions to build the image containing the appli-24

cation. All the public Docker images are hosted on an online repository called25

DockerHub4. Since its introduction in 2013, Docker counts 3.3M of Desktop26

installations, and 318B image pulls from DockerHub5.27

Defining Dockerfiles, however, is far from trivial: Each application has its28

own dependencies and requires specific configurations for the execution envi-29

ronment. Previous work [21] introduced the concept of Dockerfile smells, which30

are violations of best practices, similarly to code smells [5], and a catalog of31

such problems6. The presence of such smells might increase the risk of build32

failures, generate oversized images, and security issues [6, 10, 22, 23]. Previous33

work studied the prevalence of Dockerfile smells [6, 9, 14].34

Despite the popularity and adoption of Docker, there is still a lack of tools35

to support developers in improving the quality and reliability of containerized36

1 https://portworx.com/blog/2017-container-adoption-survey/
2 https://www.docker.com/
3 https://insights.stackoverflow.com/survey/2021
4 https://hub.docker.com/
5 https://www.docker.com/company/
6 https://github.com/hadolint/hadolint/wiki

Fixing Dockerfile Smells: An Empirical Study 3

applications, e.g., tools for automatic refactoring of code smells on Docker-1

files [13]. Relevant studies in this area investigated the prevalence of Dockerfile2

smells in open-source projects [6,9,14,21], the diffusion technical debt [4], and3

the refactoring operations typically performed by developers [13].4

While it is clear which Dockerfile smells are more frequent than others, it is5

still unclear which smells are more important to developers. A previous study6

by Eng et al. [9] reported how the number of smells evolves over time. Still,7

there is no clear evidence showing that (i) developers actually fix Dockerfile8

smells (e.g., they might incidentally disappear), and that (ii) developers would9

be willing to fix Dockerfile smells in the first place.10

In this paper, we propose a study to fill this gap. First, we analyze the11

survivability of Dockerfile smells to understand how developers fix them and12

which smells they consider relevant to remove. This, however, only tells a part13

of the story: Developers might not correct some smells because they are harder14

to fix. Therefore, we also evaluated to what extent developers are willing to15

accept fixes to smells when they are proposed to them (e.g., by an automated16

tool). The context of the study is represented by a total of 220k commits17

and 4,255 repositories, extracted from a state-of-the-art dataset containing18

the change history of about 9.4M unique Dockerfiles.19

For each instance of such a dataset (which is a Dockerfile snapshot), we20

extracted the list of Dockerfile smells using the hadolint tool [2]. The tool21

performs a rule check on a parsed Abstract Syntax Tree (AST) representation22

of the input Dockerfile, based on the Docker [1] and shell script [3] best prac-23

tices. Next, we manually validate a total of 1,000 commits that make one or24

more smells disappear to verify (i) that they are real fixes (e.g., the smell was25

not removed incidentally), (ii) whether the fix is informed (e.g., if developers26

explicitly mention such an operation in the commit message), and (iii) remove27

possible false positives identified by hadolint.28

Then, we evaluated to what extent developers are willing to accept changes29

aimed at fixing smells. To this aim, we defined Dockleaner, a rule-based30

refactoring tool that automatically fixes the 12 most frequent Dockerfile smells.31

We used Dockleaner to fix a set of smelly Dockerfiles extracted from the32

most active repositories. Next, we submitted a total of 157 pull requests to de-33

velopers containing the fixes, one for each repository. We monitored the status34

of the pull requests for more than 7 months (i.e., 218 days). In the end, we eval-35

uated how many of them get accepted for each smell type and the developers’36

reactions. The results show that, mostly, smells are fixed either very shortly37

(36% of the cases). There are also cases in which they are fixed after a very38

long period (2% - after 2 years). This could be a consequence of the fact that,39

generally, a few changes are performed on Dockerfiles and there the probabil-40

ity of noticing the errors is higher in the short-term (e.g., until the Dockerfile41

works correctly) or, instead, it naturally increases with time, but very slowly.42

Also, developers perform changes on Dockerfiles mainly to optimize the build43

time and reduce the final image size, while there are only few changes limited44

only to the improvement of code quality. Even if Dockerfile smells are com-45

monly diffused among Dockerfiles, developers are gradually becoming aware46

4 Giovanni Rosa et al.

of the writing best practices for Dockerfiles. For example, avoiding the usage1

of MAINTAINER which is deprecated, or they prefer to use COPY instead of ADD2

for copying files and folders as it is suggested by the Docker guidelines7. In3

addition, developers are open to approve changes aimed at fixing smells for the4

most common violations, but with some exceptions. Examples are the missing5

version pinning for apt-get packages (DL3008), which has received negative6

reactions from developers. However, version pinning, in general, is considered7

fundamental for other aspects, such as the base image pinning (DL3006 and8

DL3007), or the pinning of software dependencies (e.g., npm and pip).9

To summarize, the contributions that we provided with our study are the10

following:11

1. We performed a detailed analysis of the survivability of Dockerfile smells12

and manually validated a sample of smell-fixing commits for Dockerfile13

smells;14

2. We introduced Dockleaner, a rule-based tool to fix the most common15

Dockerfile smells;16

3. We ran an evaluation via pull requests of the willingness of developers of17

accepting changes aimed at fixing Dockerfile smells.18

The remaining of the paper is organized as follows: In Section 2 we provide a19

general overview on Dockerfile smells and related works. Section 3 describes the20

design of our study, while in Section 5 we present the results of our experiment.21

In section Section 6 we qualitatively discuss the results. Finally, Section 722

discusses the threats to validity and in Section 8 we summarize some final23

remarks and future directions.24

2 Background and Related Work25

Technical debt [12] has a negative impact on the software maintainability. A26

symptom of technical debt is represented by code smells [5]. Code smells are27

poor implementation choices, that does not follow design and coding best prac-28

tices, such as design patterns. They can negatively impact the maintainability29

of the overall software system. Mainly, code smells are defined for object-30

oriented systems. Some examples are duplicated code or god class (i.e., a class31

having too much responsibilities). In the following, we first introduce smells32

that affect Dockerfile, and then we report recent studies on their diffusion and33

the practices used to improve Dockerfile quality.34

Dockerfile smells. Docker reports an official list of best practices for writ-35

ing Dockerfiles [1]. Such best practices also include indications for writing shell36

script code included in the RUN instructions of Dockerfiles. For example, the37

usage of the instruction WORKDIR instead of the bash command cd to change38

directory. This because each Docker instruction defines a new layer at the time39

7 https://docs.docker.com/develop/develop-images/dockerfile_best-practices/\#

add-or-copy

Fixing Dockerfile Smells: An Empirical Study 5

of build. The violation of such practices lead to the introduction of Dockerfile1

smells. In fact, with Dockerfile smells, we indicate that instructions of a Dock-2

erfile that violate the writing best practices and thus can negatively affect the3

quality of them [21]. The presence of Dockerfile smells can also have a direct4

impact on the behavior of the software in a production environment. For exam-5

ple, previous work showed that missing adherence to best practices can lead to6

security issues [22], negatively impact the image size [10], increase build time7

and affect the reproducibility of the final image (i.e., build failures) [6,10,23].8

For example, the version pinning smell, that consists in missing version num-9

ber for software dependencies, can lead to build failures as with dependencies10

updates the execution environment can change. There are several tools that11

support developers in writing Dockerfiles. An example is the binnacle tool, pro-12

posed by Henkel et al. [10] that performs best practices rule checking defined13

on the basis of a dataset of Dockerfiles written by experts. The reference tool14

used in literature for the detection of Dockerfile smells is hadolint [2]. Such15

a tool checks a set of best practices violations on a parsed AST version of16

the target Dockerfile using a rule-based approach. Hadolint detects two main17

categories of issues: Docker-related and shell-script-related. The former affect18

Dockerfile-specific instructions (e.g., the usage of absolute path in the WORKDIR19

command8). They are identified by a name having the prefix DL followed by20

a number. The shell-script-related violations, instead, specifically regard the21

shell code in the Dockerfile (e.g., in the RUN instructions). Such violations are22

a subset of the ones detected by the ShellCheck tool [3] and they are identified23

by the prefix SC followed by a number. It is worth saying that these rules24

can be updated and changed during time. For example, as the instruction25

MAINTAINER has been deprecated, the rule DL4000 that previously check for26

the usage of that instructions that was a best practice, has been updated as27

the avoidance of that instruction because it is deprecated.28

Diffusion of Dockerfile smells. A general overview of the diffusion of29

Dockerfile smells was proposed by Wu et al. [21]. They performed an empirical30

study on a large dataset of 6,334 projects to evaluate which Dockerfile smells31

occurred more frequently, along with coverage, distribution and a particular32

focus on the relation with the characteristics of the project repository. They33

found that nearly 84% of GitHub projects containing Dockerfiles are affected34

by Dockerfile smells, where the Docker-related smells are more frequent that35

the shell-script smells. Also in this direction, Cito et al. [6] performed an em-36

pirical study to characterize the Docker ecosystem in terms of quality issues37

and evolution of Dockerfiles. They found that the most frequent smell regards38

the lack of version pinning for dependencies, that can lead to build fails. Lin39

et al. [14] conducted an empirical analysis of Docker images from Docker-40

Hub and the git repositories containing their source code. They investigated41

different characteristics such as base images, popular languages, image tag-42

ging practices and evolutionary trends. The most interesting results are those43

related to Dockerfile smells prevalence over time, where the version pinning44

8 https://github.com/hadolint/hadolint/wiki/DL3000

6 Giovanni Rosa et al.

smell is still the most frequent. On the other hand, smells identified as DL30201

(i.e., COPY/ADD usage), DL3009 (i.e., clean apt cache) and DL3006 (i.e., image2

version pinning) are no longer as prevalent as before. Furthermore, violations3

DL4006 (i.e., usage of RUN pipefail) and DL3003 (i.e., usage of WORKDIR) be-4

came more prevalent. Eng et al. [9] conducted an empirical study on the largest5

dataset of Dockerfiles, spanning from 2013 to 2020 and having over 9.4 million6

unique instances. They performed an historical analysis on the evolution of7

Dockerfiles, reproducing the results of previous studies on their dataset. Also8

in this case, the authors found that smells related to version pinning (i.e.,9

DL3006, DL3008, DL3013 and DL3016) are the most prevalent. In terms of10

Dockerfile smell evolution, they show that the count of code smells is slightly11

decreasing over time, thus hinting at the fact that developers might be inter-12

ested in fixing them. Still, it is unclear the reason behind their disappearance,13

e.g., if developers actually fix them or if they get removed incidentally.14

3 Study Design15

The goal of our study is to understand whether developers are interested in16

fixing Dockerfile smells. The perspective is of researchers interested in improv-17

ing Dockerfile quality. The context consists in 53,456 Dockerfile snapshots,18

extracted from 4,255 repositories.19

In detail, the study aims to address the following research questions:20

– RQ1: How do developers fix Dockerfile smells? We want to conduct a21

comprehensive analysis of the survivability of Dockerfile smells. Thus, we22

investigate what smells are fixed by developers and how.23

– RQ2: Which Dockerfile smells are developers willing to address? We want24

to understand if developers would find beneficial changes aimed at fixing25

Dockerfile smells (e.g., generated by an automated refactoring tool).26

3.1 Study Context27

The context of our study is represented by a subset of the dataset introduced by28

Eng et al. [9]. The dataset consists in about 9.4 million Dockerfiles, in a period29

spanning from 2013 to 2020. To the best of our knowledge, the dataset is the30

largest and the most recent one from those available in the literature [6,10,13].31

Moreover, such a dataset contains the change history (i.e., commits) of each32

Dockerfile. This characteristic allows us to evaluate the survivability of code33

smells (RQ1). The authors constructed that dataset through mining software34

repositories from the S version of the WoC (World of Code) dataset [15].35

3.2 Data Collection36

To avoid toy projects, we selected only the repositories having at least 10 stars1

for a total of 4,255 repos, excluding forks. We also discarded the repositories2

Fixing Dockerfile Smells: An Empirical Study 7

11.5M
Dockerfile-related

commits

Extraction of
smell-fixing

commits

Manual validation
of smell-removing
commits (1000)

Analysis of
Dockerfile smells

survivability

Selection of the
most frequent

and fixed smells

Collection of
developers'
responses

Definition of a
rule-based

refactoring tool

Evaluation of
the refactoring

recommendations

Submission of
refactoring

recommendations

RQ1

RQ2

RQ2

RQ1

Fig. 1: Overall workflow of the experimentation procedure.

where the star number is not available in the original dataset (i.e., the value3

is reported as NULL). We cloned all the available repositories from the selected4

sample to obtain the most updated commit data at the time our analysis5

started (i.e.,March 2023). Next, using a heuristic approach, we (i) identified all6

the Dockerfiles at the latest commit, and (ii) we traversed the commit history7

to get all the commits and snapshots for the identified Dockerfile. In detail, for8

the first step, we processed all the source files contained in the repository and9

we evaluated if the file (i) contains the word "dockerfile" in the filename, and10

(ii) if contains valid and non-empty commands, i.e., can be correctly parsed11

using the official dockerfile parser9. For each valid Dockerfile, we mined the12

change history using git log. We excluded the Dockerfiles having only one13

snapshot (i.e., no changes, referenced by only one commit). After this, we14

extracted a total of 220k commits corresponding to 53,456 unique Dockerfiles.15

In the end, we ran the latest version of hadolint10 for each Dockerfile to extract16

the Dockerfile smells, if present.17

4 Experimental Procedure18

In this section, we describe the experimentation procedure that we will use to19

answer our RQs. Fig. 1 describes the overall workflow of the study.20

4.1 RQ1: How do developers fix Dockerfile smells?21

To answer RQ1, we perform an empirical analysis on Dockerfile smell surviv-1

ability. For each Dockerfile d, associated with the respective repository from2

GitHub, we consider its snapshots over time, d1, . . . , dn, associated with the3

9 https://github.com/asottile/dockerfile
10 hadolint release v2.12.0

8 Giovanni Rosa et al.

Fig. 2: Example of a candidate smell-fixing commit that does not actually fix
the smell.

respective commit IDs in which they were introduced (i.e., c(d1), . . . , c(dn)).4

We also consider the Dockerfile smells detected with hadolint, indicated as5

η(d1), . . . , η(dn). For each snapshot di (with i > 1) of each Dockerfile d, we6

compute the disappeared smells as δ(di) = η(di)− η(di−1). All the snapshots7

for which δ(di) is not an empty set are candidate changes that aim at fixing the8

smells. We define a set of all such snapshot as PF = {di : |δ(di)| > 0}. In the9

end, we obtain a set of smelly (di−1) and smell-removing commit (di) pairs. We10

implemented the described procedure as a basic heuristic approach, which (i)11

went through all the commits, (ii) executed hadolint to detect smells, (iii) re-12

turned the smelly and smell-removing commits pairs. The total time required13

was about nine hours.14

Next, we manually evaluate the commit pairs to verify (i) that the changes15

that led to the snapshots in PF are actual fixes for the Dockerfile smell, and16

(ii) whether developers were aware of the smell when they made the change,17

and (iii) avoid any bias related to the presence of false positives in terms of18

smells (identified by hadolint). In detail, we manually inspect a sample of 1,00019

of such candidate changes, which is statistically representative, leading to a20

margin of error of 3.1% (95% confidence interval) assuming an infinitely large21

population. We look at the code diff to understand how the change was made22

(i.e., if it fixed the smell or if the smell disappeared incidentally). Also, for ac-23

tual fixes, we consider the commit message, the possible issues referenced in it,24

and the pull requests to which they possibly belong to understand the purpose25

of the change (i.e., if the fix was informed or not). We identify as smell fixing26

change a commit in which developers (i) modified one or more Dockerfile lines27

that contained one or more smells in the previous snapshot (i.e., commit), and28

(ii) kept the functionality expressed in those lines. For example, if the commit29

removes the instruction line where the smell is present, we do not label it as30

an actual smell-fixing commit. This is because the smelly line is just removed31

and not fixed (i.e., the functionality changed). Let us consider the example32

in Fig. 2: The package wget lacks version pinning (left). An actual fix would33

consist of the addition of a version to the package. Instead, in the commit, the34

package gets simply removed (e.g., because it is not necessary). Therefore, we35

do not consider such a change as a fixing change. Besides, we mark a fix as36

informed if the commit message, the possibly related pull request, or the issue37

possibly fixed with the commit explicitly reports that the modification aimed1

to fix a bad practice.2

Fixing Dockerfile Smells: An Empirical Study 9

Table 1: The most frequent Dockerfile smells identified in literature [9], along
with the most fixed rules we identified in our study (reported with ∗). We
implemented all of the rules in Dockleaner.

Rule Description How to fix

DL3003 Use WORKDIR to switch to a directory Replace cd command with WORKDIR

DL3006 Missing version pinning for base image Pin the version tag corresponding to the resulting im-
age digest

DL3008 Missing version pinning of apt-get packages Pin the latest suitable package version from Launch-
pad

DL3009 Delete the apt-get lists after installing packages Add in the corresponding instruction block the lines
to clean apt cache

DL3015 Avoid additional packages by specifying
--no-install-recommends

Add the option --no-install-recommends to the cor-
responding instruction block

DL3020 Use COPY instead of ADD for files and folders Replace ADD instruction with COPY when copying files
and folders

DL4000 MAINTAINER is deprecated Replace maintainer with the equivalent LABEL instruc-
tion

DL4006 Set -o pipefall to avoid silencing errors in RUN in-
structions having pipe operations

Add the SHELL pipefail instruction before RUN that uses
pipe

DL3059* Consider consolidation for multiple consecutive RUN in-
structions

Concatenate all subsequent RUN instruction until a
comment line or a different instruction

DL3007* Avoid to use the latest to tag the version of an image Same approach as DL3006

DL3025* Use arguments JSON notation for CMD and ENTRYPOINT Refactor the instruction command as JSON notation

DL3048* Invalid Label Key Refactor the LABEL instructions according to the
hadolint documentation examples11

Two of the authors independently evaluated each instance. The evalua-3

tors discussed conflicts for both the aspects evaluated aiming at reaching a4

consensus. The agreement between the two annotators is measured using the5

Cohen’s Kappa Coefficient [7], obtaining a value of k = 0.79 considered “very6

good” according to the interpretation recommendations [16]. The total effort7

required for the manual validation was about five working days, considering8

two of the authors that performed the annotation and discussed the conflicts.9

Moreover, starting from the smell-fixing change, we go back through the10

change history to identify the last-smell-introducing commit, i.e., the commit11

in which the artifact can be considered smelly [19], by executing git blame12

on the Dockerfile line number labeled as smelly by hadolint. In the end, we13

summarize the total number of fix commits and the percentage of actual fix14

commits. Moreover, for each rule violation, we report the trend of smell oc-15

currences and fixes over time, along with a summary table that describes the16

most fixed smells. We also discuss interesting cases of smell-fixing commits.17

4.2 RQ2: Which Dockerfile smells are developers willing to address?18

To answer RQ2, we first defined a list of rules, based both on the literature and19

the results of RQ1, and then implemented a rule-based refactoring tool,Dock-20

leaner, to automatically fix them. We defined the fixing rules as described21

in the hadolint documentation12. Next, we use Dockleaner to fix smells in22

existing Dockerfiles from open-source projects and submit the changes to the23

developers through pull requests to understand if they agree with the fixes and1

are keen to accept them. We describe these steps in the following sections.2

12 https://github.com/hadolint/hadolint/wiki

10 Giovanni Rosa et al.

4.2.1 Fixing rules for Dockerfile Smells3

As a preliminary step, we identified a set of Dockerfile smells that we wanted4

to fix, considering the list of the most occurring Dockerfile smells, ordered by5

prevalence, according to the most recent paper on this topic [9]. However, we6

excluded and added some rule violations. Specifically, among the missing ver-7

sion pinning violations, we excluded DL3013 (Pin versions in pip) and DL30188

(Pin versions in apk add) because they are less occurring variants (i.e., 4%9

and 5%, respectively) of the more prevalent smell DL3008 (15%), even if con-10

cerning different package managers. Additionally, we include in Dockleaner11

the most occurring smells resulting from the analysis performed in RQ1 and12

not reported in the literature. We report in Table 1 the full list of smells target13

in our study, along with the rule we use to automatically produce a fix. It is14

clear that most of the smells are trivial to fix. For example, to fix the violation15

DL3020, it is just necessary to replace the instruction ADD with COPY for files16

and folders. In the case of the version pinning-related smells (i.e., DL3006 and17

DL3008), instead, a more sophisticated fixing procedure is required. We refer18

to version pinning-related smells as to the smells related to missing versioning19

of dependencies and packages. Such smells can have an impact on the repro-20

ducibility of the build since different versions might be used if the build occurs21

at different times, leading to different execution environments for the applica-22

tion. For example, when the version tag is missing from the FROM instruction23

of a Dockerfile (i.e., DL3006), the most recent image having the latest tag is24

automatically selected. To fix such smells, we use a two-step approach: (i) we25

identify the correct versions to pin for each artifact (e.g., each package), and26

(ii) we insert the selected versions to the corresponding instruction lines in27

the Dockerfile. We describe below in more detail the procedure we defined for28

each smell.29

Image version tag (DL3006). This rule violation identifies a Dockerfile30

where the base image used in the FROM instruction is not pinned with an explicit31

tag. In this case, we use a fixing strategy that is inspired by the approach of32

Kitajima et al. [11]. Specifically, to determine the correct image tag, we use the33

image name together with the image digest. Docker images are labeled with one34

or more tags, mainly assigned by developers, identifying a specific version of the35

image when pulled from DockerHub. On the other hand, the digest is a hash36

value that uniquely identifies a Docker image having a specific composition37

of dependencies and configurations, automatically created at build time. The38

digest of existing images can be obtained via the DockerHub APIs13. Thus,39

the only way to uniquely identify an image is using the digest. To fix the smell,40

we obtain (i) the digest of the input Docker image through build, (ii) we find41

the corresponding image and its tags using the DockerHub APIs, and (iii) we42

pick the most recent tag assigned, that is different from the “latest” tag. An1

example of smell fixed through this rule is reported in Fig. 3.2

13 https://docs.docker.com/docker-hub/api/latest/

Fixing Dockerfile Smells: An Empirical Study 11

Fig. 3: Example of rule DL3006.

Pin versions in package manager (DL3008). The version pinning3

smell also affects package managers for software dependencies and packages4

(e.g., apt, apk, pip). In that case, differently from the base image, the pack-5

age version must be searched in the source repository of the installed pack-6

ages. The smell regards the apt package manager, i.e., it might affect only the7

Debian-based Docker images. For the fix, we consider only the Ubuntu-based8

images since (i) we needed to select a specific distribution to handle versions9

(more on this later), and (ii) Ubuntu is the most widespread derivative of10

Debian in Docker images [9]. The strategy we use to solve DL3008 works as11

follows: First, a parser finds the instruction lines where there is the apt com-12

mand, and it collects all the packages that need to be pinned. Next, for each13

package, the current latest version number is selected considering the OS dis-14

tribution (e.g., Ubuntu, Xubuntu, etc.), and the distro series (e.g., 20.04 Focal15

Fossa or 14.04 Trusty Tahr). The series of the OS is particularly important,16

because they may offer different versions for the same package. For instance,17

if we consider the curl package, we can have the version 7.68.0-1ubuntu2.518

for the Focal Fossa series of Ubuntu, while for the series Trusty Tahr it equals19

to 7.35.0-1ubuntu2.20. So, if we try to use the first in a Dockerfile using20

the Trusty Tahr series, the build most probably fails. The final step consists21

in testing the chosen package version. Generally, a package version adopts22

semantic versioning, characterized by a sequence of numbers in the format23

<MAJOR>.<MINOR>.<PATCH>. However, the specific versions of the packages24

might disappear in time from the Ubuntu central repository, thus leading to25

errors while installing them. Given that the PATCH release does not drastically26

change the functionalities of the package and that old patches frequently dis-27

appear, we replace it with the symbol ‘*’, indicating “any version,” in such a28

way the latest version is automatically selected. After that, a simulation of the29

apt-get install command with the pinned version is executed to verify that30

the selected package version is available. If it is, the package can be pinned31

with that version; otherwise, also the MINOR part of the version is replaced32

with the ‘*’ symbol. If the package can still not be retrieved, we do not pin33

the package, i.e., we do not fix the smell. Pinning a different MAJOR version,34

indeed, could introduce compatibility issues and the developer should be fully35

aware of this change. An example of a fix generated through this strategy is36

reported in Fig. 4. It is worth saying that we apply our fixing heuristic only37

to packages having missing version pinning. This means that we do not up-38

date packages pinned with another version (e.g., older than the reference date1

used to fix the smell). Moreover, in some cases, developers might not want the2

12 Giovanni Rosa et al.

Fig. 4: Example of rule DL3008.

H i!
The Dockerfile placed at {dockerfile path} contains the best practice violation
{violation id} detected by the hadolint tool.
The smell {violation id} occurs when {violation description}

This pull request proposes a fix for that smell generated by my fixing tool. The
patch was manually verified before opening the pull request. To fix this smell,
specifically, {fixing rule explanation}.

This change is only aimed at fixing that specific smell. If the fix is not valid or
useful, please briefly indicate the reason and suggestions for possible improve-
ments.

Thanks in advance.

Fig. 5: Example of the pull request message. The placeholders (wrapped in
curly braces) will be replaced with the corresponding values.

pinned package version, but rather a different one, despite the version we pin3

is most likely the closest one to the one they originally tested their Dockerfile4

on. For example, they want a newer version of that package (e.g., the latest).5

We discuss those cases during the evaluation phase of the automated fixes via6

pull requests.7

4.2.2 Evaluation of Automated Fixes8

To evaluate if the fixes generated by Dockleaner are helpful, we propose9

them to developers by submitting the patches on GitHub via pull requests.10

The first step is to select the most active repositories to ensure responses for11

our pull requests. To achieve this, we select a subset of repositories from our12

study context ensuring that, each repository, (i) contains at least one Dockerfile13

affected by one or more smells that we can fix automatically (reported in14

Table 1), and (ii) at least one pull request merged, along with commit activity,15

in the last three months. In this way, we select a total of 186 repositories16

containing 829 unique Dockerfiles affected by 5,403 smells. The next step is17

to associate each repository with a specific smell corresponding to a single18

Dockerfile to fix. This is to avoid flooding developers with pull requests.19

We used a greedy algorithm to select the smell to fix in the Dockerfiles20

from the candidate repositories to ensure each of them is considered a bal-1

anced number of times. We start from the less occurring smells among all the2

Fixing Dockerfile Smells: An Empirical Study 13

available repositories, and we iteratively (i) select one target smell to fix, (ii)3

randomly select one Dockerfile candidate containing that smell, (iii) assign the4

repository to that smell to mark it as unavailable for the successive iterations,5

and (iv) increment a counter, for each smell, of the assigned Dockerfile candi-6

dates. The algorithm stops when there are no more repositories available. The7

counter of assigned smells is used, along with the overall smell occurrence, in8

the first step of the heuristic. This ensures that, for each iteration, we consider9

the smell (i) having the lower occurrence and (ii) is currently assigned for10

the fix to a lower number of repositories. In this phase we manually discard11

smells that can not be fixed by Dockleaner. For example, for DL3008, we12

only support Ubuntu-based Dockerfiles, but the smell might also affect the13

Debian-based ones. In total, we excluded 14 smells.14

At the end of that procedure, we followed the commonly used git work-15

flow best practices for opening the pull requests. Specifically, we first created16

a fork for the target repository. Then, we created a branch where the name17

follows the format fix/dockerfile-smell-DLXXXX. Finally, we signed-off the18

patches as it is required by some repositories (as well as being a good practice),19

and we submitted the pull request. To do this, we defined and used a struc-20

tured template for all the pull requests, as reported in Fig. 5. We manually21

modified the template in the cases where the repository requires a custom-22

defined guidelines. The time required by Dockleaner to generate the fixing23

recommendations is only a few seconds for the simpler fixing procedures (e.g.,24

replacing COPY with ADD). For the more complex ones, such as version pinning,25

it can even take a few minutes.26

For the evaluation, we adopted a methodology similar to the one used by27

Vassallo et al. [20]. In detail, we monitored the status of each pull request for28

more than 7 months (i.e., 218 days, starting from the last created pull request29

date) to allow developers to evaluate it and give a response. We interacted30

with them if they asked questions or requested additional information, but31

we did not make modifications to the source code of the proposed fix unless32

they are strictly related to the smell (e.g., the fixing procedure of the smell33

is reported as not valid). We report such cases in the discussion section. At34

the end of the monitoring period, we tagged each pull request with one of the35

following states:36

– Ignored : The pull request does not receive a response;37

– Rejected/Closed : The pull request has been closed or is explicitly rejected;38

– Pending : The pull request has been discussed but is still open;39

– Accepted : The pull request is accepted to be merged but is not merged yet;40

– Merged : The proposed fix is in the main branch.41

For each type of fixed smell, we report the number and percentage of the42

fix recommendations accepted and rejected, along with the rationale in case43

of rejection and the response time. Also, we conducted a qualitative analysis44

of the developers’ interactions. In particular, we analyzed those where the pull45

request is rejected or pending to understand why the fix was not accepted.1

For example, the fix might have been accepted because the developers were2

14 Giovanni Rosa et al.

2014 2016 2018 2020 2022
Year

0

250

500

750

1000

1250

1500

1750

C
um

ul
at

iv
e

S
um

DL3003
DL3006
DL3007
DL3008
DL3009
DL3018
DL3020
DL3032
DL3059
DL4000

Fig. 6: Occurrence over time for the top 10 Dockerfile smells.

not interested in performing that modification to their Dockerfile. Moreover,3

we analyze the additional information that the developer submits on rejected4

pull requests, from which we extract takeaways useful for both practitioners5

and researchers. Using a card-sorting-inspired approach [18] performed by two6

of the authors on the obtained responses, we identified a set of categories that7

we used to classify the developers’ reactions to rejected pull requests.8

4.2.3 Data Availability9

The code and data used in our study, along with the implementation of Dock-10

leaner, can be found in the replication package [17].11

5 Analysis of the Results12

In this section, we report the analysis of the results achieved in our study in13

order to answer our research questions.14

5.1 RQ1: How do developers fix Dockerfile smells?15

We report in Fig. 6 the trend of the 10 most occurring Dockerfile smells among16

the Dockerfile snapshots we analyzed. To plot this figure, we collected all the17

unique Dockerfiles (based on their path and repository) for each year, then we18

extracted and counted all the smells of the latest version of each of them (for1

each year).2

Fixing Dockerfile Smells: An Empirical Study 15

2014 2016 2018 2020 2022
Year

0

25

50

75

100

125

150

175

C
um

ul
at

iv
e

S
um

DL3003
DL3006
DL3007
DL3009
DL3015
DL3020
DL3025
DL3048
DL3059
DL4000

Fig. 7: Fixing trend over time for the 10 most fixed Dockerfile smells.

0
50

0
10

00
15

00

F
ix

in
g

tim
e

(d
ay

s)

D
L3

05
9

D
L3

00
6

D
L4

00
0

D
L3

00
7

D
L3

02
0

D
L3

00
3

D
L3

01
5

D
L3

00
9

D
L3

02
5

D
L3

04
8

D
L3

01
9

D
L3

00
4

D
L3

02
8

D
L3

04
2

D
L3

03
2

D
L3

01
6

D
L3

01
3

D
L4

00
6

D
L3

02
7

D
L3

04
7

D
L3

02
2

D
L3

01
4

D
L3

00
8

D
L3

04
0

D
L4

00
3

D
L3

00
0

D
L3

00
2

D
L3

01
8

D
L4

00
1

D
L3

04
5

D
L3

02
4

D
L3

02
9

D
L3

00
5

Fig. 8: Overall fixing time delta (days) among all Dockerfile smells.

The most occurring smell is DL3006 – version pinning for the base image–,3

followed by DL3008 – missing version pinning for apt-get–, which is also the4

most growing one, and DL4000 – deprecated MAINTAINER. Since smell DL40005

became a bad practice in 201714 after the deprecation of the MAINTAINER6

instruction, we excluded its occurrences before that date from the plot.1

14 https://docs.docker.com/engine/release-notes/prior-releases/

#1130-2017-01-18

16 Giovanni Rosa et al.

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

60
0

63
0

66
0

69
0

72
0

75
0

78
0

81
0

84
0

87
0

90
0

93
0

96
0

99
0

10
20

10
50

10
80

11
10

11
40

11
70

12
00

12
30

12
60

12
90

13
20

13
50

13
80

14
10

14
40

14
70

15
00

15
30

15
60

15
90

16
20

16
50

Elapsed Days

50

100

150

200

250

300

350

C
um

ul
at

iv
e

N
um

be
r o

f F
ix

es

Fig. 9: Cumulative fixes over time interval (days) among all Dockerfile smells.

Table 2: Summary of fixed Dockerfile smells, reporting the number of fixes
(manually validated), median time to fix (in days), and the magnitude of
changes performed in the repository until the smell has been fixed (median
number of commits). Only smells with at least 5 manually validated fixes are
reported.

Rule Description # Solved Days (Med.) Changes (Med.)

DL3059 Consider consolidation for multiple consecutive RUN instructions 168 8.9 4.0
DL3006 Missing version pinning for base image 53 13.7 8.0
DL3007 Avoid to use the latest to tag the version of an image 45 64.6 43.0
DL4000 MAINTAINER is deprecated 45 13.5 1.0
DL3020 Use COPY instead of ADD for files and folders 43 3.8 5.0
DL3003 Use WORKDIR to switch to a directory 29 0.2 0.0
DL3015 Avoid additional packages by specifying --no-install-recommends 26 12.6 4.0
DL3009 Delete the apt-get lists after installing packages 25 23.9 8.0
DL3025 Use arguments JSON notation for CMD and ENTRYPOINT 21 6.0 2.0
DL3048 Invalid Label Key 18 0.1 0.0
DL3019 Use the --no-cache switch when installing packages using apk 15 88.0 4.0
DL3004 Do not use sudo as it leads to unpredictable behavior 11 0.3 2.0
DL3028 Pin versions in gem install 8 41.0 57.0
DL3042 Avoid cache directory with pip install --no-cache-dir <package> 7 0.0 0.0
DL3032 yum clean all missing after yum command 6 597.8 10.0
DL3016 Pin versions in npm 5 33.6 4.0

In our manual validation, we found that 33.6% of the commits in which2

smells disappear actually fix smells. We report in Table 2 a summary of the3

characteristics of such commits for the smells for which we found at least 54

fixes (from a total of 572 fixed smells). In detail, we report the total number5

of fixing commits, and the average fixing time, measured both as days and6

the number of commits that elapsed between the last commit introducing7

a smell and the smell-fixing commit. Additionally, we report in Fig. 8 the8

adjusted boxplots describing the days that passed after each smell got fixed.9

We report in Fig. 7 the fixing trend over time for the 10 most fixed Dockerfile10

smells. Also, in this case, we consider only the changes which we manually1

validated as smell-fixing commits. However, this time, we consider each smell2

fixed separately. This means that, if a commit fixes 5 smells, we count the3

commit as 5 different fixes, one for each smell. The most fixed smell is DL30594

Fixing Dockerfile Smells: An Empirical Study 17

– multiple consecutive RUN instructions. It is worth noting that we found this5

fix ∼3 times more frequently than any other fix. This is because we found6

that, when there are many consecutive RUN instructions, developers tend to fix7

all of the occurrences of this issue in a single commit. Other common fixes are8

version pinning for base images (DL3006 and DL3007), along with DL40009

– deprecated MAINTAINER and DL3020 – prefer COPY over ADD for files and10

folders.11

We report in Fig. 9 the results of our survivability analysis of the smells12

by plotting the number of fixed smells in different amounts of time (the time13

is on a logarithmic scale). It is clear that most of the fixes have been per-14

formed within 1 day (203 instances). This means that when developers intro-15

duce Dockerfile smells, they immediately perform maintenance during the first16

adoptions. On the other hand, if a smell survives the first day, it is less likely17

that it gets fixed later. In fact, according to Table 2, the smells that survive18

the less are DL3048 (incorrect LABEL format) and DL3042 (--no-cache-dir19

for pip install), which have been fixed in less than one day in most of the20

cases (100% and 60%, respectively). It is interesting to notice that two similar21

smells, i.e., DL3006 and DL3007, have largely different survivability. When the22

latest tag is explicitly used (DL3007) instead of being inferred (DL3006), the23

smell survives ∼5 times more (both in terms of days and commits, as reported24

in Table 2). However, it is worth noting that the effects of both tags are exactly25

the same.26

We evaluated how many smell-fixing commits can be considered informed.27

We consider an informed fix when the developer explicitly mentions that the28

aim of the fix is to remove bad patterns in the commit message. We found that29

only 18 out of 336 manually validated fixes are informed. The most common30

smell explicitly addressed by developers is DL4000 (fixed in 4 cases) – dep-31

recated MAINTAINER. An example can be found in commit 811582f, from the32

repository webbertakken/K8sSymfonyReact15. Among the remaining ones,33

DL3025 – JSON notation for CMD and ENTRYPOINT– (4 cases) and DL302034

– prefer COPY over ADD for files and folders– (3 cases) are the smells of which35

developers are more aware.36

As for the non-informed cases, mainly developers report that the fix is37

aimed at (generically) improving the performance of the Dockerfile. Examples38

are the fixes for rule DL3059 explicitly performed to reduce the Docker image39

size16 and the number of layers17. In some cases, we found that developers40

use linters to detect bad practices. Among those, only one commit explicitly41

mentioned hadolint18, while in other cases they mentioned the tool DevOps-42

Bash-tools19.1

In the end, we can conclude that developers have a limited knowledge about2

Dockerfile best practices, in terms of the quality of the Dockerfile code. This is3

15 https://github.com/webbertakken/K8sSymfonyReact/commit/811582f
16 https://github.com/KDE/kaffeine/commit/d03145b
17 https://github.com/Eadom/ctf_xinetd/commit/21f2785
18 https://github.com/flyway/flyway-docker/commit/3eeabe5
19 https://github.com/HariSekhon/Dockerfiles/commit/eeab92a

18 Giovanni Rosa et al.

Table 3: Opened pull requests and their resulting status sorted by number
of accepted and merged PRs. The column Merged* reports the cumulative
number of accepted patches (sum of accepted and merged).

Rule Ignored Rejected Pending Accepted Merged* Assigned

DL4000 1 (8%) 0 0 0 12 (92%) 13
DL3020 2 (14%) 2 (14%) 0 0 10 (71%) 14
DL3006 2 (23%) 2 (8%) 0 2 (21%) 9 (69%) 13
DL3007 2 (14%) 3 (21%) 0 0 9 (64%) 14
DL3015 3 (23%) 2 (15%) 0 0 8 (62%) 13
DL3025 4 (33%) 0 0 1 (8%) 8 (67%) 12
DL3059 2 (15%) 3 (23%) 0 0 8 (62%) 13
DL3048 2 (22%) 1 (11%) 0 0 6 (67%) 9
DL3009 5 (42%) 3 (25%) 0 2 (17%) 4 (33%) 12
DL3003 1 (14%) 3 (43%) 0 0 3 (43%) 7
DL3008 5 (33%) 7 (47%) 0 0 3 (20%) 15
DL4006 4 (50%) 1 (13%) 0 0 3 (38%) 8

Total 33 (23%) 27 (19%) 0 5 (3%) 83 (58%) 143

because they are more interested in the optimization of other non-functional4

aspects such as build time and size of the Docker image.5

Û Summary of RQ1: The most fixed smells are those related to con-
secutive RUN instructions (DL3059), version pinning for the base image
(DL3006/DL3007), use of the deprecated MAINTAINER instruction (DL4000)
along with the usage of WORKDIR to change directory (DL3020). The 34%
of the evaluated commits (1000) actually fixed the smell. Also, most of the
smells are fixed immediately after their introduction (within 1 day) and,
when this does not happen, they might remain in the repository for a long
time (more than 3 years).

6

5.2 RQ2: Which Dockerfile smells are developers willing to address?7

In Table 3 we report the results of the evaluation performed via GitHub pull8

requests. In total, we submitted 143 pull requests. The majority of them have9

been accepted or merged by developers (58%). On the other hand, 23% them10

have been ignored, while 19% received an explicit rejection from the developers.11

The smells receiving the highest acceptance rate are DL4000 – deprecated12

MAINTAINER– (92%) and DL3020 – prefer COPY over ADD for files and folders–1

(71%), followed by rule DL3006 – version pinning for the base image– (69%).2

This is similar to what we reported for RQ1, where they resulted to be the most3

fixed smell among the manually validated smell-fixing commits. This means4

that developers care about those smells as they frequently fixed them and they5

are also willing to accept fixes. The smell DL3008 – missing version pinning6

for apt-get– has been the most rejected fix (47% acceptance), with only 37

Fixing Dockerfile Smells: An Empirical Study 19

D
L3

02
5

D
L3

00
6

D
L4

00
0

D
L3

05
9

D
L3

01
5

D
L4

00
6

D
L3

00
7

D
L3

02
0

D
L3

00
9

D
L3

04
8

D
L3

00
3

D
L3

00
8

Smell Code

0

5

10

15

20

25

30

35

Av
er

ag
e

C
lo

si
ng

 T
im

e
(D

ay
s)

(a)

D
L4

00
6

D
L3

00
8

D
L3

00
3

D
L3

00
9

D
L3

05
9

D
L3

00
7

D
L3

02
0

D
L3

00
6

D
L3

01
5

D
L3

04
8

Smell Code

0

20

40

60

80

100

120

140

160

Av
er

ag
e

C
lo

si
ng

 T
im

e
(D

ay
s)

(b)

Fig. 10: Average resolution time (days) for merged pull requests (a) and re-
jected pull requests (b).

accepted pull requests, along with smell DL4006 – use of pipefail for piped8

operations– which has been the most ignored one (50%). The low acceptance9

rate (33%) resulting for smell DL3009 (deletion of apt-get sources lists) is10

surprising, since developers are prone to reduce the image size, as we noticed in11

RQ1. Despite this, we can conclude that they do not prefer to remove apt-get1

source lists to achieve this goal.2

In Fig. 11 we report the adjusted boxplot for the time required for pull3

requests to get the first response and to be resolved. Additionally, Fig. 104

reports the median resolution time, measured in days, of the submitted pull5

requests by smell type. For both of those figures, we only consider merged6

and rejected PRs, because they are the ones for which we have a definitive7

20 Giovanni Rosa et al.

First response Merged/Rejected

0
5

0
1

0
0

1
5

0
2

0
0

E
la

p
s
e

d
 t

im
e

 (
d

a
y
s
)

Fig. 11: Adjusted boxplot of the number of days required for a pull request to
obtain a response (left) and to be merged/rejected (right).

response from the developers. The smell DL3025 – JSON notation for CMD and8

ENTRYPOINT– is the one that has been accepted in the shortest time interval,9

followed by DL3006 – version pinning for the base image– and DL4000 –10

deprecated MAINTAINER. Despite the fixes for DL3020 – prefer COPY over ADD11

for files and folders– are the second most-accepted ones, they have a median12

of 5 days to get accepted and merged.13

On the other hand, the fixes for DL4006 – use of pipefail for piped14

operations– have been rejected almost immediately by developers. This also15

happens for DL3008 – missing version pinning for apt-get.16

Finally, we report in Table 4 the reasons why developers rejected our pull17

requests. We assigned one or more categories, for each rejected change, by18

analyzing the responses for the 27 rejected pull requests. Most of the time, the19

fix has been considered invalid (22% of cases). This means that the proposed20

change was not a valid improvement for the Dockerfile. In 11% of cases, the21

developers did not accept the change as they use the Dockerfile in testing or22

development environments.23

The rejections of the fixes for DL3008 are interesting: In 19% of the cases,24

the changes have been rejected because they are not perceived as a concrete fix.25

Furthermore, the fixes for that smell have been rejected because they could26

negatively impact the security of the image (8% of cases) or cause a build1

failure in the future (4% of cases).2

Fixing Dockerfile Smells: An Empirical Study 21

Table 4: Categories of reasons why developers rejected our pull requests.

Reason Involved Smells Occurrences

Invalid fix DL3003,DL3007,DL3020,DL3059,DL4006 6
No reason DL3006,DL3008,DL3015,DL3059 4
Fix not required DL3008,DL3059 5
Not trusted DL3007,DL3008,DL3020 3
Testing environment DL3006,DL3007,DL3008 3
Reduces security DL3008 2
Development environment DL3009 2
Vendored dependency DL3003 1
Potential breaking change DL3008 1
Unused file DL3009 1

Û Summary of RQ2: Developers accepted most of the Dockerfile smell
fixes we provided (58%) and rejected only a few of them (19%). They partic-
ularly liked the fixes for DL4000 (deprecated MAINTAINER), DL3020 (prefer
COPY over ADD for files and folders), and DL3006 (version pinning for the
base image). Instead, they frequently rejected DL3008 (version pinning for
apt-get packages) (47%). The reason is that it is seen as a bad practice as
it could lead to failures or security issues in the future.

3

6 Discussion4

Despite the majority of the submitted pull requests got accepted, there are5

some specific smells that developers are not willing to address. Looking at Ta-6

ble 4, in 5 cases, the fix was rejected because the container was used in a testing7

or development environment. An example is the fix proposed for DL300920,8

where, even if the change can reduce the image size, it negatively impacts the9

image build time. Thus, for that reason, the change has been rejected. Prob-10

ably, the concern about build time comes from frequent builds performed for11

that specific Dockerfile. A different example is the pull request submitted to12

envoyproxy/ratelimit21, the reason for the rejection is that developers do13

not care about the version pinning (DL3007) as they use that Dockerfile for14

testing and they need to test the latest version of the software. This is not the15

same for DL3006 when the tag is missing. In that case, developers are more16

likely to accept the version pinning for the base image (see RQ1 and RQ2).17

20 https://github.com/Shopify/semian/pull/484
21 https://github.com/envoyproxy/ratelimit/pull/411

22 Giovanni Rosa et al.

� Lesson 1. Developers tend to use the “latest” tag for the base images
(DL3007) in order to obtain the latest version of the image, while they are
willing to accept the version pinning when the tag is missing (DL3006).
However, as the “latest” tag is not immutable, this practice can lead to
unexpected behaviors when the base image is updated.

18

DL3008 constitutes a peculiar case. Fixing such a smell requires devel-1

opers to pin the version of the apt-get packages to make the build more2

reproducible. Developers, however, believe that doing so might be mislead-3

ing22, or it might make the build more fragile23. Indeed, this happened for4

an accepted pull request, where after a month the version pinning for the5

package ca-certificates caused a build failure because the pinned version6

was not available anymore24. Moreover, the smell DL3008 led to interesting7

discussions. For example, a suggestion was to provide an automated script8

to periodically pin the package versions when there is an update25. For 3 of9

the proposed fixes, the developers additionally highlighted that they do not10

trust the change because it has been generated by an automated tool. This11

happened even if we specified that we manually checked the correctness of the12

change.13

� Lesson 2. Version pinning for OS packages is not considered a good
practice. Developers tend to avoid it because (i) they consider it a misleading
practice, (ii) it could lead to building failures due to the unavailability of the
pinned version, and (iii) missed security updates when the pinned version
gets older.

14

In 6 cases, instead, developers did not perceive the change as correct or15

sufficient for a fix. This happens, for example, in commits 5531f2e26 (DL3020)16

and 320ba8727 (DL4006). An interesting discussion arose for the rejected fix17

of DL300328. The fix for that smell provides the replacement of "cd <path>"18

with "WORKDIR <path>". However, for that particular case, fixing the smell19

required putting a WORKDIR instruction before the smelly code block and an-20

other after to switch back to the previous working directory. This is because21

the target smelly code temporarily changes the working directory to operate22

on specific files. In other words, there are cases in which developers believe it23

is legitimate to change the working directory through cd (mostly, when this24

change is temporary). We report an example in Fig. 12, where the fix has been25

rejected because the change of the working directory is temporary.26

22 https://github.com/James-Yu/LaTeX-Workshop/pull/3837
23 https://github.com/Yelp/aactivator/pull/47
24 https://github.com/FDio/govpp/pull/123
25 https://github.com/Lookyloo/lookyloo/pull/663
26 https://github.com/ROCmSoftwarePlatform/Tensile/pull/1707
27 https://github.com/bupy7/xml-constructor/pull/6
28 https://github.com/NUbots/NUbots/pull/1063

Fixing Dockerfile Smells: An Empirical Study 23

Fig. 12: Example of a wrong fix for DL3003. In that case, the change of working
directory is temporary, and the fix has been rejected.

We conclude that, in similar cases, the detected smell is a false positive.27

This is because the fix will increase the number of layers, in addition to redun-1

dant instructions. This negatively impacts the code quality of the Dockerfile.2

Comparing the results from RQ1 and RQ2, we can conclude that there3

are no big differences between the fixes that developers have applied and the4

changes that we propose via pull requests. The most performed fixes, which5

are also in the most accepted pull requests, are those related to deprecated6

MAINTAINER (DL4000), version pinning for the base image (DL3006), and mul-7

tiple consecutive RUN instructions (DL3059). There is a difference in terms of8

the most fixed one. While in the wild developers tend to fix more DL3059, in9

our pull request the most fixed one is DL4000. As also shown in RQ1, they10

pay more attention to performance improvements over code quality, for which11

they are not fully aware of what is the current writing best practices29. In12

fact, DL4000 is purely related to writing best practices and does not affect13

performance. When faced with a ready-to-use fix, however, they tend to prefer14

the ones that more likely will not disrupt the Dockerfile.15

In general, developers keep more attention to the impact of the change on16

the build process and the image size, instead of the impact on the quality of17

the Dockerfile code. Reporting an example among the accepted pull requests,18

we have the fix proposed for the smell DL3015 (--no-install-recommend19

flag for apt)30, where the developers explicitly asked to fix another Dockerfile20

affected by the same smell because it decreases the size of the built image.21

� Lesson 3. Developers are not fully aware of the best practices for writing
Dockerfiles, and they tend to prefer performance improvements over code
quality.

22

Additionally, it is interesting to analyze more in depth the differences in23

terms of performed fixes for DL3048 (incorrect LABEL format) and DL400024

(MAINTAINER is deprecated, replace with LABEL). Actually, there are two pos-25

sible ways to format Dockerfile labels. The first one follows the standard format26

29 https://github.com/riga/law/pull/152
30 https://github.com/lablup/backend.ai/pull/1216

24 Giovanni Rosa et al.

defined by opencontainers 31, which is also suggested for DL4000 in the official27

Docker documentation 32. The second is more general and does not enforce a1

pre-defined format. It is reported in the hadolint documentation 33, which also2

is reported in the official Docker documentation as examples of LABEL instruc-3

tions 34. The fixes that we analyzed in RQ1 that follow the first format are4

limited only to one repository35. In other cases, developers adopted the sec-5

ond format36. The fixes proposed via pull requests, instead, follow the second6

format where for DL4000 we got the highest acceptance rate. This is probably7

because the second format is more general, avoiding unnecessary constraints8

and changes on the LABEL instructions37.9

Moreover, while in this context the fix is still sufficient to correct the smell,10

in other contexts our fixing procedure could not be correct. The most evident11

case is for the smell DL3059 (multiple consecutive RUN instructions). In fact,12

open-source developers tend to fix it mainly by compacting the installation of13

software packages38. In our pull requests, instead, we merge all the subsequent14

RUN instructions until a comment or a different instruction is found. This could15

mean that a more complex and informed fixing procedure should be adopted16

in order to better improve the size and performance of Dockerfiles. Thus, a17

more advanced approach in that direction could be useful to improve the fixing18

procedure, taking also into account the aspects that developers are interested19

to improve (image size and build time). To this aim, considering the scenario20

in which we are using a debian base image, an advanced approach to fix smell21

DL3059 could be a heuristic that (i) selects all the RUN instructions that are22

aimed at installing dependencies, (ii) extracts the list of such dependencies,23

taking also into account if they require external sources lists, and (iii) combine24

all those installations into a single RUN instruction at the top of the Dockerfile.25

In this way, the re-build time will be reduced thanks to the layers caching26

system. At the same time, the image size will be reduced since there will be27

fewer layers and less space wastage (e.g., package cache). For smell DL3003,28

instead, an advanced fixing approach should target the bash code to correct the29

usage of the pattern "RUN cd ...", rather than using WORKDIR. In the example30

reported in Fig. 12, the smell could be fixed by using the absolute paths instead31

of the relative paths for the command (e.g., "RUN ln -sf /usr/local/lib32

/usr/local/lib64"). While this can be done in this case, there are other33

scenarios in which this could be detrimental. For example, if a custom script34

writes the output files in the current directory, it is still necessary to use cd35

before running it. Thus, such a fixing procedure should be applied only for36

specific bash instructions patterns (like the previously-mentioned one).37

31 https://specs.opencontainers.org/image-spec/annotations/
32 https://docs.docker.com/engine/reference/builder/#maintainer-deprecated
33 https://github.com/hadolint/hadolint/wiki/DL3048
34 https://docs.docker.com/engine/reference/builder/#label
35 https://github.com/HariSekhon/Dockerfiles/commit/f329b94
36 https://github.com/scossu/lakesuperior/commit/a552ff7
37 https://github.com/hpc/charliecloud/pull/1628
38 https://github.com/hpc/charliecloud/commit/aae89d7

Fixing Dockerfile Smells: An Empirical Study 25

� Lesson 4. A more advanced fixing procedure is required for some types of
smells (e.g., DL3003 – Use WORKDIR to switch to a directory– and DL3059 –
multiple consecutive RUN instructions), i.e., taking into account the context
in which the smell is found.

38

7 Threats to Validity1

Construct Validity. The threats to construct validity are about the non-2

measurable variables of our study. More specifically, our study is heavily based3

on the rule violations detected by hadolint. Other tools are able to detect4

bad practices in Dockerfiles, such as dockle39. We choose hadolint which is5

commonly used in the literature [6, 9, 14, 21] and also in enterprise tools for6

code quality40. However, hadolint could lead to false positives or can miss some7

smells41. The manual evaluation we performed on the smell-fixing commits8

validated the identified smells and those that have been removed. During that9

evaluation, we noticed that hadolint mainly fails to detect the rule DL305910

(consecutive RUN instructions). To reduce this impact of this threat on our11

study, we manually annotated the lines in which the smell was present.12

Internal Validity. The threats to internal validity are about the design13

choices that we made which could affect the results of the study. In detail, we14

used as a study context a sample of repositories extracted from the dataset15

provided by Eng et al. [9] by considering only those having stargazers count16

greater or equal to 10. This is commonly used in the literature to avoid toy17

projects [8]. There can be a bias in the selected smells for our fix recommen-18

dations. We selected the most occurring smell as described in the analysis of19

Eng et al. [9]. We assume that an automated approach would have the biggest20

impact on the smells that occur more frequently. Also, at least for some of21

them, the reason behind the fact that they do not get fixed might be that22

they are not trivial (i.e., an automated tool would be helpful). The fixing pro-23

cedure for some of the selected smells can be wrong, and some smells might24

not get fixed. We based the rules on the fixing procedure on the Docker best25

practices and on the hadolint documentation. Still, to minimize the risk of this,26

we double-checked the modifications before submitting the pull requests and27

manually excluded the ones that make the build of the Dockerfile fail. Thus, we28

ensured the correctness of the fixes generated by Dockleaner, submitted via29

the pull requests, for the cases evaluated in our study. However, it is still pos-30

sible that the tool produces wrong fixes for other Dockerfiles. For example, the31

version pinning fixes could fail in the cases in which the package is not reach-32

able (i.e., DL3008), or the Docker image digest is not available in DockerHub33

(i.e., for smells DL3006 and DL3007). It is worth noting, indeed, that our aim34

is not to evaluate the tool, but rather to understand if developers are willing35

39 https://github.com/goodwithtech/dockle
40 https://github.com/codacy/codacy-hadolint
41 https://github.com/hadolint/hadolint/issues/693

26 Giovanni Rosa et al.

to accept fixes. Moreover, there is a possible subjectiveness introduced of the36

manual validation of the smell-fixing commits, which has been mitigated with1

the involvement of two of the authors and the discussion of the conflicts. Also,2

it is important to say that the two evaluators have more than 3 years of experi-3

ence with Dockerfiles development and Docker technology in general, allowing4

them to have a good understanding of the smells and the applied fixes. Finally,5

we performed the selection of the last-smell-introducing commits by using the6

git blame command on the smelly lines identified by hadolint. Since hadolint7

can fail to detect some smells, in some cases, the lines impacted by the fix are8

different from the ones identified by hadolint. This means that we got some9

false positives while we identify the last-smell-introducing commits. Since our10

results showed that Dockerfiles are not frequently changed, we believe that the11

impact of this threat is limited.12

External Validity. External validity threats concern the generalizability13

of our results. In our study, we considered a sample of repositories from GitHub14

containing only open-source Dockerfiles. This means that our findings might15

not be generalized to other contexts (e.g., industrial projects) as developers16

could handle smell in a different way.17

8 Conclusion18

In the last few years, containerization technologies have had a significant im-19

pact on the deployment workflow. Best practice violations, namely Dockerfile20

smells, are widely spread in Dockerfiles [6, 9, 14, 21]. In our empirical study,21

we evaluated the Dockerfile smell survivability by analyzing the most fixed22

smells in open-source projects. We found that Dockerfile smells are widely23

diffused, but developers are becoming more aware of them. Specifically, for24

those that result in a performance improvement. In addition, we evaluated to25

what extent developers are willing to accept fixes for the most common smells,26

automatically generated by a rule-based tool. We found that developers are27

willing to accept the fixes for the most commonly occurring smells, but they28

are less likely to accept the fixes for smells related to the version pinning of29

OS packages. To the best of our knowledge, this is the first in-depth analy-30

sis focused on the fixing of Dockerfile smells. We also provide several lessons31

learned that could guide future research in this field and help practitioners in32

handling Dockerfile smells.33

Acknowledgements The work by Rocco Oliveto, Giovanni Rosa, and Simone Scalabrino34

was supported by the European Union - NextGenerationEU through the Italian Ministry of35

University and Research, Projects PRIN 2022 “QualAI: Continuous Quality Improvement36

of AI-based Systems”, grant n. 2022B3BP5S, CUP: H53D23003510006.37

The authors would like to thank Alessandro Giagnorio (University of Molise, Italy) for38

implementing a preliminary version of Dockleaner.39

Fixing Dockerfile Smells: An Empirical Study 27

Conflict of interest40

The authors declare that they have no conflict of interest.1

References2

1. Best practices for writing Dockerfiles. [Online; accessed 2-Jun-2022]3

2. hadolint: Dockerfile linter, validate inline bash, written in Haskell. [Online; accessed4

28-May-2022]5

3. ShellCheck, a static analysis tool for shell scripts. [Online; accessed 2-Jun-2022]6

4. Azuma, H., Matsumoto, S., Kamei, Y., Kusumoto, S.: An empirical study on self-7

admitted technical debt in dockerfiles. Empirical Software Engineering 27(2), 1–268

(2022)9

5. Becker, P., Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:10

Improving the Design of Existing Code. Addison-Wesley Professional (1999)11

6. Cito, J., Schermann, G., Wittern, J.E., Leitner, P., Zumberi, S., Gall, H.C.: An empir-12

ical analysis of the docker container ecosystem on github. In: 2017 IEEE/ACM 14th13

International Conference on Mining Software Repositories (MSR), pp. 323–333. IEEE14

(2017)15

7. Cohen, J.: A coefficient of agreement for nominal scales. Educational and psychological16

measurement 20(1), 37–46 (1960)17

8. Dabic, O., Aghajani, E., Bavota, G.: Sampling projects in github for msr studies.18

In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories19

(MSR), pp. 560–564. IEEE (2021)20

9. Eng, K., Hindle, A.: Revisiting dockerfiles in open source software over time. In: 202121

IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), pp.22

449–459. IEEE (2021)23

10. Henkel, J., Bird, C., Lahiri, S.K., Reps, T.: Learning from, understanding, and support-24

ing devops artifacts for docker. In: 2020 IEEE/ACM 42nd International Conference on25

Software Engineering (ICSE), pp. 38–49. IEEE (2020)26

11. Kitajima, S., Sekiguchi, A.: Latest image recommendation method for automatic base27

image update in dockerfile. In: International Conference on Service-Oriented Comput-28

ing, pp. 547–562. Springer (2020)29

12. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory and30

practice. Ieee software 29(6), 18–21 (2012)31

13. Ksontini, E., Kessentini, M., Ferreira, T.d.N., Hassan, F.: Refactorings and technical32

debt in docker projects: An empirical study. In: 2021 36th IEEE/ACM International33

Conference on Automated Software Engineering (ASE), pp. 781–791. IEEE (2021)34

14. Lin, C., Nadi, S., Khazaei, H.: A large-scale data set and an empirical study of docker35

images hosted on docker hub. In: 2020 IEEE International Conference on Software36

Maintenance and Evolution (ICSME), pp. 371–381. IEEE (2020)37

15. Ma, Y., Bogart, C., Amreen, S., Zaretzki, R., Mockus, A.: World of code: an infras-38

tructure for mining the universe of open source vcs data. In: 2019 IEEE/ACM 16th39

International Conference on Mining Software Repositories (MSR), pp. 143–154. IEEE40

(2019)41

16. Regier, D.A., Narrow, W.E., Clarke, D.E., Kraemer, H.C., Kuramoto, S.J., Kuhl, E.A.,42

Kupfer, D.J.: Dsm-5 field trials in the united states and canada, part ii: Test-retest43

reliability of selected categorical diagnoses. American Journal of Psychiatry 170(1),44

59–70 (2013). DOI 10.1176/appi.ajp.2012.12070999. URL https://doi.org/10.1176/45

appi.ajp.2012.12070999. PMID: 2311146646

17. Rosa, G., Zappone, F., Scalabrino, S., Oliveto, R.: Replication package (2024). https:47

//doi.org/10.6084/m9.figshare.2352267948

18. Spencer, D.: Card sorting: Designing usable categories. Rosenfeld Media (2009)49

19. Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta, M., De Lucia, A., Poshy-50

vanyk, D.: When and why your code starts to smell bad (and whether the smells go51

away). IEEE Transactions on Software Engineering 43(11), 1063–1088 (2017)52

28 Giovanni Rosa et al.

20. Vassallo, C., Proksch, S., Jancso, A., Gall, H.C., Di Penta, M.: Configuration smells in53

continuous delivery pipelines: a linter and a six-month study on gitlab. In: Proceedings1

of the 28th ACM Joint Meeting on European Software Engineering Conference and2

Symposium on the Foundations of Software Engineering, pp. 327–337 (2020)3

21. Wu, Y., Zhang, Y., Wang, T., Wang, H.: Characterizing the occurrence of dockerfile4

smells in open-source software: An empirical study. IEEE Access 8, 34127–34139 (2020)5

22. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation between6

outdated docker containers, severity vulnerabilities, and bugs. In: 2019 IEEE 26th7

International Conference on Software Analysis, Evolution and Reengineering (SANER),8

pp. 491–501. IEEE (2019)9

23. Zhang, Y., Vasilescu, B., Wang, H., Filkov, V.: One size does not fit all: an empirical10

study of containerized continuous deployment workflows. In: Proceedings of the 201811

26th ACM Joint Meeting on European Software Engineering Conference and Sympo-12

sium on the Foundations of Software Engineering, pp. 295–306 (2018)13

Fixing Dockerfile Smells: An Empirical Study 29

Giovanni Rosa is a Ph.D. student in Software Engi-
neering at University of Molise (UNIMOL), Italy. He re-
ceived his MSc. in Software System Security, from the
same University, in October 2020. His research activ-
ity is focused (but not limited to) on software quality
and maintenance of DevOps artifacts. More information:
https://giovannirosa.com/

14

Federico Zappone has received his MS degree in Soft-
ware System Security from the University of Molise (UNI-
MOL). He is a co-author of various papers about Dis-
tributed Ledger Technologies like Hyperledger Fabric. He
is the co-founder of two different companies, Just Another
SRL, an Italian company dedicated to developing innova-
tive, high-quality systems, and BB-SMILE SRL, a spin-
off born out of a collaboration between the University of
Molise and Sapienza University of Rome.

1

Simone Scalabrino is an Assistant Professor at the Uni-
versity of Molise, Italy, where he leads the DEVeloper-
centrIc Software Engineering Research group (DEVISER).
He has received his PhD degree from the University of
Molise in 2019, defending a thesis on automatically assess-
ing and improving source code readability and understand-
ability. His main research interests include code quality,
software testing, and empirical software engineering. He is
the author of more than 50 papers published in interna-
tional journals and conferences, and he has received three

ACM SIGSOFT Distinguished Paper Awards at ICPC 2016, ASE 2017, and
MSR 2019. He is also co-founder of Datasound srl, a spin-off of the University
of Molise. More information: https://dibt.unimol.it/sscalabrino

2

Rocco Oliveto is a Full Professor at the University of
Molise (Italy). He is the founder of the Software Engineer-
ing and Knowledge Engineering (STAKE) Lab of the Uni-
versity of Molise. Prof. Oliveto is co-author of about 200
papers on topics related to software traceability, software
maintenance and evolution, and empirical software engi-
neering. He has received several awards for his research
activity, including 5 ACM SIGSOFT Distinguished Pa-
per Awards and 3 Most Influential Paper Awards. Prof.
Oliveto participated in the organization and was a mem-

ber of the program committee of several international conferences in the field
of software engineering. Since 2018 he has been CEO of Datasound srl, a spin-
off of the University of Molise that was created to conceive, design and develop
innovative recommendation systems to be applied in different contexts.

3

4

