
Black-Box Reconstruction Attacks on LLMs:
A Preliminary Study in Code Summarization

Marco Russodivito1, Angelica Spina1, Simone Scalabrino1, and Rocco Oliveto1

University of Molise, Italy {marco.russodivito, angelica.spina,
simone.scalabrino, rocco.oliveto}@unimol.it

Abstract. Large Language Models (LLMs) have demonstrated effec-
tiveness in tackling coding tasks, leading to their growing popularity in
commercial solutions like GitHub Copilot and ChatGPT. These models,
however, may be trained on proprietary code, raising concerns about
potential leaks of intellectual property. A recent study indicates that
LLMs can memorize parts of the source code, rendering them vulnerable
to extraction attacks. However, it used white-box attacks which assume
that adversaries have partial knowledge of the training set.
This paper presents a pioneering effort to conduct a black-box attack
(reconstruction attack) on an LLM designed for a specific coding task –
code summarization. The results achieved reveal that while the attack
is generally unsuccessful (with an average BLEU score below 0.1), it
succeeds in a few instances, reconstructing versions of the code that
closely resemble the original.

Keywords: LLMs for Coding Tasks · Security · Reconstruction Attacks.

1 Introduction

Large Language Models (LLMs) are increasingly integral to software engineering
research, proving particularly effective in coding tasks such as bug fixing and code
summarization [14]. These models operate by inputting a sequence of textual
tokens and outputting another sequence, which may include source code or
natural language depending on the task. Modern LLMs employed for coding
typically leverage the Transformer architecture [21] and undergo a two-stage
training process: initial pre-training on extensive codebases to learn language
patterns semi-supervised, followed by task-specific fine-tuning in a supervised
manner (i.e., by providing examples of input and output sequences).

The effectiveness of these models has led to their integration into commercial
tools like CoPilot1 and ChatGPT2, which are becoming indispensable coding
assistants [26]. While research-oriented LLMs are often trained on open-source
datasets, commercial variants might use proprietary code that companies wish
to keep confidential.
1 https://www.microsoft.com/en-us/microsoft-copilot (Verified on April 26th, 2024)
2 https://chat.openai.com

2 M. Russodivito et al.

Consider a company that wants to develop a coding assistant from an LLM
fine-tuned on its proprietary data from 1,000 software projects and over 5,000
developers, aiming to commercialize this tool without exposing the underlying
source code. This introduces potential confidentiality issues if methods exist that
can extract specific data instances from the trained model without any other
dataset information.

Let us call the (confidential) dataset used for fine-tuning the LLM Dp. If
there is a methodology that can extract any instance p ∈ Dp given only the
trained model (as a black-box) and no other instance of Dp, we say that the
LLM violates confidentiality. Al-Kaswan et al. [2] recently proved that LLMs for
coding tasks memorize token sequences. Especially, the authors tested whether
such LLMs are vulnerable to white-box attacks, which assume that the adversary
has partial knowledge of the Dp. In most cases, however, adversaries might not
have such information. Previous work highlighted that other types of privacy
attacks are possible for DNNs [7, 18–20,22]. Reconstruction Attacks (or Model
Inversion Attack) are a specific type of such attacks that aim to recreate one
or more training samples [18] assuming that the adversary has no information
about the training instances. It is still unclear, however, to what extent such
attacks are effective on LLMs for coding tasks.

In this paper, we present an empirical study assessing the feasibility of a black-
box attack (Reconstruction Attack) to compromise confidentiality in LLMs used
for coding tasks. We specifically analyze the T5 model by Mastropaolo et al. [14]
trained for the task of code summarization (T5summ), where the model generates
textual descriptions from code snippets. Our experiment involved constructing
an inverse model that takes textual descriptions and attempts to output original
code snippets. To build an inverse model for T5summ (T5−1

summ), we first collected
a set S of ∼700k open-source code snippets from state-of-the-art datasets [11–13].
Then, we gave each snippet s ∈ S to the trained T5summ, which generated its
textual summary sc and trained T5−1

summ on the pairs ⟨sc, s⟩. Finally, we tried to
extract the code snippets in Dp by giving textual summaries sc to T5−1

summ.
The obtained results revealed that in almost all the cases it is not possible

to extract training instances (BLEU score < 0.1). Still, we found some cases
in which the BLEU score is high and the attack generated closely-resembling
versions of the source code in Dp. Our results call for future work aimed at
investigating more in depth the possibility of running such attacks on other tasks
and propose solutions to mitigate such a problem.

2 Related Work

Reconstruction Attacks have been extensively studied in both black-box and white-
box settings. In the former, the adversary lacks information about the model
parameters, architecture, and training data. In the latter, the adversary has
complete knowledge of the target model [18]. Such a concept was first introduced
by Fredrikson et al. [6], who showed that an attacker could predict a patient’s
genetic markers using only demographic information and model access.

Black-Box Reconstruction Attacks on LLMs 3

This led to a broader application of model inversion attacks, as demonstrated
by Fredrikson et al. [5] in subsequent work. In this work, the authors proposed a
more generic model inversion attack applicable either in black-box or white-box
settings and against different models (e.g., decision trees and neural networks for
face recognition) which exploits confidence values obtained from prediction APIs.
Hidano et al. [9] introduced a black-box technique targeting online prediction sys-
tems that adapt over time, demonstrating that these systems could be influenced
by poisoning attacks to make them more susceptible to Reconstruction Attack .
Some attacks can even involve Generative Adversarial Networks (GANs) [10].
Their approach uses real-time learning in collaborative deep learning models
to train a GAN to generate private and prototypical examples of the training
set. Another example is the attack by Zhang et al. [24], which leverages partial
public data (e.g., blurred or corrupted images) to learn a distributional prior
using GANs and employs it to guide the inversion process.

Recently, many studies have focused on the security of LLMs, to understand
the degree of training data storage that these models achieve. This type of
attacks is called Training Data Extraction Attacks. Like Model Inversion Attacks,
Training Data Extraction Attacks aim to reconstruct training samples, but in
a verbatim way [4, 25]. A popular approach [4] consists of two main steps: a
generation phase where different potential suffixes are obtained by querying
several times the model with a set of prefixes, and an inference step used to infer
if each suffix, or just some of them [1], belongs to the target training set. This can
be done in different ways: one can perform fuzzy match like 3-gram fuzzy match
or using BLEU-4 score, he can apply an exact match, or even a combination of all
the techniques [2,4]. The exact match check also includes the case of Type-1 clone
detection to identify code memorization presented by Yang et al. [22], which tries
to reconstruct small snippets belonging to the training set. Another interesting
approach involves the use of canaries, i.e., the insertion of N clones of predefined
samples into the training set, which researchers then attempt to reconstruct.
This reconstruction can be performed either by employing a canary completion
task [16] or by exploiting the exposure concept illustrated by Carlini et al. [3].

Yang et al. [23] tested the execution of a Reconstruction Attack for Large
Language Models. Such an attack (i) is a black-box attack that works without
special assumptions on adversary knowledge; (ii) can be applied at inference
time (i.e., when the target model is already trained); (iii) is effective against
complex models, such as CNNs. To the best of our knowledge, our work is the
first attempt to use an adaptation of the work by Yang et al. [23] to exploit
LLMs for coding tasks.

3 Empirical Study Design

Our study aims to determine the feasibility of a Reconstruction Attack on LLMs
for code summarization tasks. addressing the following Research Question (RQ):

To what extent is a code summarization model vulnerable to a
Reconstruction Attack?

4 M. Russodivito et al.

3.1 The Reconstruction Attack Method

In the context of our study we exploit the Reconstruction Attack methodology
proposed by Yang et al. [23], originally designed for CNNs, adapting it to
LLMs for coding tasks. The core concept involves training an inverse model
(Minverse) that functions oppositely to the target model (Mtarget), enabling
the extraction of training instances by querying Minverse . We assume that the
adversary lacks knowledge of the dataset used to train Mtarget (i.e., the one we
want to reconstruct), and she has black-box access to Mtarget , allowing her to input
data and receive prediction outputs. Additionally, the adversary understands the
semantics of the input and has access to the tokenizer used by Mtarget , which
converts textual data into numerical vectors. We assume that the target model
uses a publicly available tokenizer that the adversary can access.

The attack process is structured around the phases of the Kill Chain. Ini-
tially, in the Reconnaissance phase, the adversary analyzes the target model to
understand its input and output characteristics. Next, during the Weaponization
phase, the adversary compiles an auxiliary set (Daux) of semantically compatible
samples, in our case, source code snippets. This set is used to probe Mtarget ,
creating an attack set (Datk) during the Delivery phase. This set consists of pairs
⟨Mtarget(a), a⟩, which are then used to train the inverse model (Minverse) in the
Exploitation phase. Ultimately, the adversary queries Minverse with the intention
of reconstructing original training instances.

3.2 Context of the Study

The context of our study is composed of two types of objects: (i) a target model
and a dataset that we use as the auxiliary dataset .

As for the former, we focus on the T5 model [17] adapted to support coding
tasks [14]. The authors introduced specialized models to supports four tasks:
Automatic Bug Fixing, Injection of Code Mutants, Generation of Assertions, and
Code Summarization. We focus on the model that tackles the code-summarization
task, T5summ. The dataset we want to reconstruct (i.e., the one used to train
T5summ) is a variation of the dataset provided by Haque et al. [8]. Specifically,
the instances of their dataset are tuples ⟨s, as, cs, d⟩, where s is the source code,
as is the AST, cs is the remaining code of the Java class, and d is the textual
description of the method. Instead, our set consists of pairs ⟨s, d⟩. We focus on
code summarization because it is the only task that assumes that the adversary
has no information about the source code. Ideally, the adversary only needs a
textual description that is close to the one used in the training set to retrieve
the protected source code.

We use as the auxiliary dataset a combination of three state-of-the-art dataset
of code snippets. The first one is CodeSearchNet [13], which contains about 6M
functions from open-source code involving six different programming languages.
We only focus on Java instances. The second one is TL-CodeSum [12], which
has been collected from GitHub mining Java projects with at least 20 stars and
create from 2015 to 2016.

Black-Box Reconstruction Attacks on LLMs 5

Such a dataset is frequently used for code-summarization tasks, but it is
different from the dataset used in the target model. The third one is DeepCom [11],
which has been built from 9,714 open-source projects from GitHub and is used as
a benchmark for comment generation tasks. We merged these datasets, removing
duplicate entries and code comments, and leveraged the tokenizer from the target
model to adapt all auxiliary set samples to the input format of the target model.
After preprocessing, the final auxiliary dataset comprised 722,067 instances.

3.3 Experimental Procedure

To construct the inverse model of T5summ (T5−1
summ), we chose to use the same

architecture of the target model (i.e., T5). We fine-tuned such a model using the
attack dataset built using the procedure reported in Section 3.1.

In order to address our research question, we optimistically assume that the
adversary can access the exact summaries used in the training set. We then run
T5−1

summ once for each summary and evaluate the similarity between the code
generated by T5−1

summ and the original code from the training set. It is important
to note that this scenario relaxes the conditions described in Section 3.1, as it
assumes prior knowledge about the training set. Therefore, our findings should
be considered an upper bound of potential outcomes, given that such information
might not be available to an adversary in practice.

To quantify the reconstruction quality, we utilized the BLEU score (Bilingual
Evaluation Understudy) [15], which measures the similarity of n-grams between
the reconstructed and original sequences on a scale from 0 to 1. A value closer to
1 indicates a higher similarity between the two code snippets.

4 Empirical Study Results

This section provides a discussion on the results achieved and the limitations of
our study.

4.1 Analysis of the Results

Figure 1 shows the distribution of the BLEU score between the reconstructed
code and the actual code in the training set. The average score is lower than
0.1. Nevertheless, there are several outliers with relatively high BLEU score,
suggesting that our reconstruction attack can sometimes recover significant
portions of the original training data.

We conducted a manual analysis of some reconstructions with high BLEU score
to determine if the reconstruction attack was successful in these instances. Figure 2
presents examples of Java methods that were partially reconstructed. Notably,
all examples are concise (three lines of code). Even though the reconstructions
are not perfect, they always allow to get the core logic of the methods. In detail,
Figure 2-a displays a method with a different (but semantically similar) name.

6 M. Russodivito et al.

Fig. 1: Box plots for the BLEU score among all performed Reconstruction Attacks .

(a) PROMPT: Adds new attribute

ORIGINAL
public void putAttribute(String name, String value){

attributes.put(name, value);

}

RECONSTRUCTED
public void addAttribute(String name, String value){

attributes.put(name, value);

}

(b) PROMPT: Log the given message with the tag of info
ORIGINAL
public void info(String message) {

writeInfoToken(message);

}

RECONSTRUCTED
public static void log(String message) {

log(message, null);

}

(c) PROMPT: Deletes the named file

ORIGINAL
public void delete(String filename) {

new File(filename).delete();

}

RECONSTRUCTED
public void deleteFile(String filename)

 throws IOException {

 if (filename == null) {

 throw new IllegalArgumentException("File name cannot be null");

 }

 if (filename.endsWith(File.separator)) {

 filename = filename.substring(0,

 filename.length() - File.separator.length());

 }

 new File(filename).delete();

}

Fig. 2: Examples of partially reconstructed Java methods.

The reconstructed code in Figure 2-b is more generic compared to the reference
one. The reconstruction in Figure 2-c exhibits additional logic in method body.
These findings indicate that while the reconstruction attack does not always
replicate the training data verbatim, in some cases it is able to produce meaningful
and logically coherent code snippets.

4.2 Threats to Validity

As for the threats to construct validity, we assumed the adversary could access
the tokenizer to encode and decode raw input and output data. In practical
scenarios, an adversary might might not have such a piece of information. In
terms of internal validity, merging three datasets to create the auxiliary set
(auxiliary dataset) might introduce duplicates, as all datasets were sourced from
GitHub. However, we found that the overlap of common samples was under 4%,
and these were subsequently removed. Finally, as for the threats to external
validity, our study focused on a single code summarization model. Testing the
attack against other models could enhance the generalizability of our results.

Black-Box Reconstruction Attacks on LLMs 7

5 Conclusion and Future Work

We present an initial exploration of performing a Reconstruction Attack on an
LLM designed for a coding task – specifically, code summarization – with the
objective of reconstructing the source code used for training. The results indicate
that the attack fails on most instances, suggesting that state-of-the-art LLMs
for coding tasks largely maintain confidentiality and do not disclose source code.
However, there were some instances where the attack successfully reconstructed
versions of the source code that closely resembled the original. Future research
should focus on developing training methods for LLMs that further reduce
the likelihood of successful reconstruction attacks, even in these rare successful
instances.

Acknowledgment

This publication is part of the project PNRR-NGEU which has received funding
from the MUR – DM 118/2023. This work has been supported by the European
Union - NextGenerationEU through the Italian Ministry of University and
Research, Projects PRIN 2022 “QualAI: Continuous Quality Improvement of
AI-based Systems”, grant n. 2022B3BP5S , CUP: H53D23003510006.

References

1. Al-Kaswan, A., Izadi, M., van Deursen, A.: Targeted attack on GPT-neo for the
SATML language model data extraction challenge. arXiv:2302.07735 (2023)

2. Al-Kaswan, A., Izadi, M., Van Deursen, A.: Traces of memorisation in large language
models for code. In: IEEE/ACM International Conference on Software Engineering.
pp. 1–12 (2024)

3. Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., Song, D.: The secret sharer: Evaluating
and testing unintended memorization in neural networks. In: USENIX Security Symp.
pp. 267–284 (2019)

4. Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts,
A., Brown, T., Song, D., Erlingsson, U., et al.: Extracting training data from large
language models. In: USENIX Security Symp. pp. 2633–2650 (2021)

5. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: ACM SIGSAC Conference on
Computer and Communications Security (CCS). pp. 1322–1333 (2015)

6. Fredrikson, M., Lantz, E., Jha, S., Lin, S., Page, D., Ristenpart, T.: Privacy in
pharmacogenetics: An {End-to-End} case study of personalized warfarin dosing. In:
USENIX Security Symp. pp. 17–32 (2014)

7. Ganju, K., Wang, Q., Yang, W., Gunter, C.A., Borisov, N.: Property inference attacks
on fully connected neural networks using permutation invariant representations. In:
Computer and Communications Security Conference. pp. 619–633 (2018)

8. Haque, S., LeClair, A., Wu, L., McMillan, C.: Improved automatic summarization
of subroutines via attention to file context. In: International Conference on Mining
Software Repositories. pp. 300–310 (2020)

8 M. Russodivito et al.

9. Hidano, S., Murakami, T., Katsumata, S., Kiyomoto, S., Hanaoka, G.: Model inversion
attacks for prediction systems: Without knowledge of non-sensitive attributes. In:
IEEE International Conference on Privacy, Security, and Trust. pp. 115–11509 (2017)

10. Hitaj, B., Ateniese, G., Perez-Cruz, F.: Deep models under the gan: information
leakage from collaborative deep learning. In: ACM SIGSAC Conference on Computer
and Communications Security. pp. 603–618 (2017)

11. Hu, X., Li, G., Xia, X., Lo, D., Jin, Z.: Deep code comment generation. In:
IEEE/ACM International Conference on Program Comprehension. pp. 200–210
(2018)

12. Hu, X., Li, G., Xia, X., Lo, D., Lu, S., Jin, Z.: Summarizing source code with
transferred api knowledge. In: International Joint Conference on Artificial Intelligence.
p. 2269–2275 (2018)

13. Husain, H., Wu, H.H., Gazit, T., Allamanis, M., Brockschmidt, M.: Codesearchnet
challenge: Evaluating the state of semantic code search. arXiv:1909.09436 (2019)

14. Mastropaolo, A., Scalabrino, S., Cooper, N., Palacio, D.N., Poshyvanyk, D., Oliveto,
R., Bavota, G.: Studying the usage of text-to-text transfer transformer to support
code-related tasks. In: IEEE/ACM International Conference on Software Engineering.
pp. 336–347 (2021)

15. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic
evaluation of machine translation. In: Annual Meeting of the ACL. pp. 311–318
(2002)

16. Parikh, R., Dupuy, C., Gupta, R.: Canary extraction in natural language under-
standing models. In: Annual Meeting of the ACL (2022)

17. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research (JMLR) 21(1), 5485–5551 (2020)

18. Rigaki, M., Garcia, S.: A survey of privacy attacks in machine learning. ACM
Computing Surveys 56(4), 1–34 (2023)

19. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: IEEE Symposium on Security and Privacy
(SP). pp. 3–18 (2017)

20. Tramèr, F., Zhang, F., Juels, A., Reiter, M.K., Ristenpart, T.: Stealing machine
learning models via prediction APIs. In: USENIX Security Symp. pp. 601–618 (2016)

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. Advances in neural information processing
systems 30 (2017)

22. Yang, Z., Zhao, Z., Wang, C., Shi, J., Kim, D., Han, D., Lo, D.: Unveiling mem-
orization in code models. In: IEEE/ACM International Conference on Software
Engineering. pp. 856–856 (2024)

23. Yang, Z., Zhang, J., Chang, E.C., Liang, Z.: Neural network inversion in adversarial
setting via background knowledge alignment. In: ACM SIGSAC Conference on
Computer and Communications Security. pp. 225–240 (2019)

24. Zhang, Y., Jia, R., Pei, H., Wang, W., Li, B., Song, D.: The secret revealer:
Generative model-inversion attacks against deep neural networks. In: IEEE/CVF
Computer Vision and Pattern Recognition Conference. pp. 253–261 (2020)

25. Zhang, Z., Wen, J., Huang, M.: ETHICIST: Targeted training data extraction
through loss smoothed soft prompting and calibrated confidence estimation. In:
Annual Meeting of the ACL (2023)

26. Ziegler, A., Kalliamvakou, E., Li, X.A., Rice, A., Rifkin, D., Simister, S., Sit-
tampalam, G., Aftandilian, E.: Measuring github copilot’s impact on productivity.
Communication of ACM 67(3), 54–63 (2024)

	Black-Box Reconstruction Attacks on LLMs:A Preliminary Study in Code Summarization

