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Abstract—Automated code summarization is a long-standing
goal for code comprehension. This task automatically generates
documentation using a given method. Deep Learning (DL)-based
approaches have been proven beneficial for various software
engineering (SE) tasks, including this one. Most state-of-the-
art datasets for code summarization are automatically mined
from GitHub and, thus, might contain erroneous or sub-optimal
examples. Previous work showed that using a simple rule-based
approach for removing noisy instances allows for a tangible
reduction of the training set size while not reducing the effec-
tiveness of the trained models. Motivated by this finding, we
conjecture that it is possible to further reduce the dataset size by
removing instances that contain different issues. In this paper, we
explore the extent to which code-comment coherence, a specific
quality attribute of code summaries, can be used to optimize
code summarization datasets. Specifically, we hypothesize that
removing incoherent code-comment pairs might positively impact
the effectiveness of the models. To do this, we rely on SIDE,
a recently introduced metric for code-summary coherence. We
examine multiple selectivity levels of training instances from
two state-of-the-art datasets (TL-CodeSum and Funcom) and
evaluate the resulting models on three manually curated test sets.
The results show that even halving the training set sizes does not
significantly affect the model’s ability to generate summaries.
However, when comparing the most restrictive selection strategy
with a simpler one that randomly selects the training instances,
we observe that the resulting accuracy of the model also does
not change. This result suggests that (i) current datasets contain
many irrelevant examples, and (ii) different quality attributes
should be explored for optimizing code summarization datasets.

Index Terms—Code Summarization, Data Quality, Code-
Comment Coherence, Empirical Study

I. INTRODUCTION

Writing comments and keeping them up to date during
software maintenance and evolution is a challenging task and
requires effort [1], [2], [3], [4]–yet, high-quality comments
and documentation are essential for understanding code [5],
[6]. Thus, automatically generating code comments from code
has always been a long-lasting dream of developers and prac-
titioners willing to bolster program comprehension in a cost-

public HashSet getCommandResultsRootFeatures() {
      HashSet rootFeatureSet = new HashSet();
      Feature belowSplitRoot = null;
      Feature aboveSplitRoot = null;
      if (belowSplitTranscript != null) {
         belowSplitRoot = belowSplitTranscript.getRootFeature();
         rootFeatureSet.add(belowSplitRoot);
      }
      if (aboveSplitTranscript != null) {
         aboveSplitRoot = aboveSplitTranscript.getRootFeature();
         if (aboveSplitRoot != belowSplitRoot)
            rootFeatureSet.add(aboveSplitRoot);
      }
      return rootFeatureSet;
}

Invoked AFTER the command is executed. SIDE SCORE: -0.90

Fig. 1. Example of a ⟨code, summary⟩ pair exhibiting a misalignment after
the coarse-grained filtering by CAT.

effective way [7], [8], [9], [10], [11], [12]. A dream that came
reality, thanks to the recent advancements in Deep Learning
(DL) models and particularly Large Language Models (LLMs)
that pushed the boundaries of Software Engineering (SE)
automation to the next level.

Modern DL-based approaches based on Transformers [13],
[14], [15] rely on transfer learning. First, a basic model is pre-
trained to acquire knowledge of the programming language.
Then, from it, several specialized models can be fine-tuned to
tackle specific tasks. This approach has been proven effective
for several SE tasks, including code generation [16], [17], [18],
[19], program repair [20], [21], [22], [23], and, indeed, code
summarization [24], [25], [10], [12], [26], [11].

Fine-tuning a DL model still requires plenty of examples,
which can hardly be produced or curated manually. Thus, most
state-of-the-art datasets for training DL models for coding
tasks (including code summarization) are built by automati-
cally mining open-source software repositories.

However, datasets created by mining software repositories
tend to be noisy, containing several low-quality instances [27],
[28], [29]. More specifically, Shi et al. [30] recently proposed
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a heuristic-based approach named CAT that can automatically
clean up low-quality ⟨summary, code⟩ pairs from code sum-
marization datasets. This approach removes or fixes structural
quality issues at comment- (e.g., commented code) and code-
level (e.g., empty methods). The results of their empirical
study show that removing noisy instances does not reduce
and even improves the model’s ability to produce meaningful
code summaries. Even though CAT streamlines coarse-grained
filtering, the ⟨code, summary⟩ pairs that are not discarded can
still have low quality and thus negatively impact the ability of
the model to produce good code summaries. Let us consider
the instance in Fig. 1 from the state-of-the-art Funcom dataset.
While no structural problem exists (CAT does not discard
it), the instance is characterized by a summary completely
incoherent with the source code. Exposing the model to
instances with such inconsistencies can cause hallucinations
[31], which may lead to decreased performance.

For this reason, we conjecture that a finer-grained selection
of ⟨code, summary⟩ pairs in code summarization datasets is
not only possible, but even desirable to (i) reduce the training
time, and (ii) possibly improve the model effectiveness. More
specifically, we conjecture that code-comment coherence,
which is a well-known quality attribute of ⟨code, summary⟩
pairs [32], might play a crucial role in achieving this goal.

In this paper, we present an empirical investigation in
which we study the impact of fine-grained filtering based
on code-comment coherence on code summarization models
in terms of effectiveness (i.e., correctness of the inferences)
and efficiency (i.e., training time). To measure the code-
comment coherence, we rely on SIDE, a metric recently
introduced by Mastropaolo et al. [33]. The authors show that
SIDE strongly correlates with human evaluations of summary
quality, surpassing established metrics including BLEU [34]
and ROUGE [35]. We consider two state-of-the-art datasets
for code summarization, i.e., TL-CodeSum [24] and Funcom
[9], already filtered with CAT [30]. Then, we further filter
the instances in terms of SIDE value by considering different
thresholds (i.e., {0.5, 0.6, 0.7, 0.8, 0.9}). Finally, we use each
resulting training set (including the original one) to fine-tune
CodeT5+ [36].

We test the models on two manually-curated datasets from
the literature [37], [38]. We observe that reducing the size of
the training set, even with the most restrictive filter (SIDE0.9,
which selects ∼50% of the instances), has a negligible impact
on the model’s effectiveness. On the other hand, reducing the
number of training instances results in a significantly lower
training time (up to ∼111 saved hours). To further validate our
original hypothesis that code-comment coherence is a suitable
quality attribute for filtering instances in code summarization
datasets, we compared the most restrictive filter (SIDE0.9) with
a filter that keeps the same number of instances, but by simply
choosing them randomly. Surprisingly, we observed that the
random filter achieves negligibly worse results than SIDE0.9.

Our results provide two clear insights. First, code-comment
coherence is marginally important for selecting suitable in-
stances for code summarization. Second, regardless of this,

removing instances (even randomly!) does not impact the
effectiveness of code summarization models. This suggests
that additional code-comment quality attributes should be
investigated, and researchers should prioritize relevance over
quantity to better select the most informative instances to build
code summarization datasets.

The paper is organized as follows. Section II provides
backgrounds on the existing selection technique for code sum-
marization (CAT [30]) and overviews SIDE [33]. Section III
details the study definition and planning. Results are reported
in Section IV, while Section V discusses its implications, and
Section VI the threats to its validity. Section VII discusses
related work about data quality. Finally, Section VIII concludes
the paper and outlines directions for future work.

II. SELECTION STRATEGIES FOR CODE SUMMARIZATION

In this section, we provide backgrounds about (i) a state-
of-the-art strategy for repairing or removing poor instances
from code summarization datasets (CAT), and (ii) the SIDE
metric, which we use to streamline a data-centric, quality-
aware instance filtering.

A. Code-comment cleAning Tool

CAT (Code-comment cleAning Tool) is an approach and
tool by Shi et al. [30] to detect and handle noisy instances
given the pairs of <code, summary> from code-summarization
datasets. The development of CAT was preceded by a manual
investigation involving 9 participants who examined 1,600
<code, summary> pairs. This manual analysis aimed to define
a taxonomy of noisy data categories.

The taxonomy features comments- and code-related noisy
data, such as commented-out method or empty function. Based
on such categories, Shi et al. defined a set of heuristic rules
and implemented them in the CAT tool. CAT works with two
possible strategies based on the issues found: On the one hand,
it fixes instances with minor issues. For example, it removes
block-level comments. On the other hand, it completely drops
instances where no fix is possible, including, for example,
getters and setters.

B. Fine-Grained Filtering: SIDE

SIDE (Summary alIgnment to coDe sEmantics) is a novel
quality-aware metric presented by Mastropaolo et al. [33].
SIDE addresses the shortcomings of traditional metrics such
as BLEU [34], ROUGE [39], and METEOR [40] used in code
summarization tasks.

SIDE employs a contrastive learning approach to determine
the accuracy with which a code summary documents the
underlying code, explicitly focusing on Java methods. Con-
trastive learning aims to maximize the distance between the
reference code and inappropriate comments while minimizing
the distance to suitable comments. The model that implements
SIDE, MPNet [41], provides a continuous score ranging from
-1 to 1. Scores closer to -1 indicate poor alignment between the
code summary and the actual code, whereas scores closer to 1
suggest a strong alignment. SIDE showed a high correlation
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with human evaluations of summary quality, outperforming
established metrics like BLEU, ROUGE, and METEOR.

The benefits of a quality-aware metric like SIDE extend
beyond evaluating code summarization techniques, as Mas-
tropaolo et al. [33] noted. SIDE can be valuable when distin-
guishing high-quality code documentation from subpar exam-
ples is essential. We conjecture that SIDE ensures that only
the instances most likely to enhance the training procedure are
used, enabling the model to converge faster without a drop in
performance by filtering out low-quality elements.

Our study relies on SIDE to select ⟨code, summary⟩ pairs
with high coherence. Specifically, given a training set T and
a threshold t, we select the training instances {pi ∈ T |
SIDE(pi) ≥ t}.

III. STUDY DEFINITION, DESIGN AND PLANNING

The goal of this study is to empirically evaluate how code-
comment coherence, through a quality-aware selection strategy
grounded on SIDE, impacts the effectiveness and training
efficiency of neural code summarization models.

More specifically, the study aims to address the following
research questions:
RQ0: How do code summarization datasets measure up in

terms of code-comment coherence? In this preliminary
question, we assess the coherence of code-comment pairs
of datasets commonly used in code summarization. As
we aim to use a coherence-aware strategy to optimize
training sets, first of all, we would like to see how the
coherence is distributed.

RQ1: How does a coherence-aware strategy selection impact
the performance of neural code summarization models?
In this research question, we investigate how a targeted
selection of training data based on code-comment coher-
ence impacts the performance of neural code summariza-
tion models.

RQ2: How does the coherence-aware strategy selection com-
pare with a random baseline? In this research question,
we test our hypothesis that code-comment coherence is
a quality attribute that can be used to select training
instances.

A. Context Selection

The context of our study consists of datasets containing
pairs of Java methods with the associated summaries. For
fine-tuning the models, we consider the two most important
datasets from the state of the art: TL-CodeSum [24], and
Funcom [9].

The TL-CodeSum dataset [24] is specifically designed for
the code summarization task. It consists of ∼87k instances
⟨code, summary⟩ extracted from GitHub repositories created
from 2015 to 2016, and having at least 20 stars. In detail, Hu
et al. [24] extracted the first sentence—likely to describe the
overall method functionality—from the doc of each pair.

Similarly to TL-CodeSum, the Funcom dataset [9] is also
specifically designed for code summarization. Funcom consists
of over 2.1M ⟨code, summary⟩ pairs collected from the

Sourcerer repository. As for TL-CodeSum, LeClair et al. [9]
only consider methods with their javadoc, extracting the first
sentence as corresponding summary.

Shi et al. [30] found many noisy instances and duplicates in
the above-described datasets and cleaned them up using their
heuristic-based dataset-cleaning approach. For this reason,
we use the cleaned versions of TL-CodeSum and Funcom
provided by Shi et al. [30]. The cleaned TL-CodeSum contains
53,597 training instances, while the cleaned Funcom contains
1,184,438 training instances.

The above datasets are built automatically, and no manual
check was performed, i.e., there is no guarantee of their
quality. For this reason, we use two additional, manually
curated datasets to test the models. The first one is CoderEval
[37], which consists of 230 Python and 230 Java code
generation problems collected from open-source, high-starred
projects which include original and human-labeled docstrings
that should act as prompt for Code Generation models to
generate the corresponding code. The instances have been
subject to manual screening, for which the main criterion is
the probability of appearing in real-development scenarios. We
focus on the Java set of problems, inverting the input and
the output i.e., from ⟨docstring, code⟩ to ⟨code, docstring⟩.
To align the format of the pairs format, we performed an
additional manual analysis in which one of the authors checked
all the triplets with a second author to confirm the analysis.
We found that some of the docstring(s) contained more than a
sentence. Therefore, to make them consistent with the previous
dataset format (e.g., single sentence), we extracted the first sen-
tence from each docstring. Still, we found 12 occurrences in
which the corresponding original docstring does not describe
the code (e.g., “@inheritDoc”, “@param modelName
model name of the entity”, and similar). We also
excluded docstring: “Computes floor($log_2 (n)$)
$+ 1$.” since it includes a formula not explained in natural
language. Again, to appropriately align the evaluation, we
do not evaluate such instances, ending up with 218 original
instances.

The second manually-curated dataset we use is the one
by Mastropaolo et al. [38]. The dataset consists of 892
methods associated with their summary (i.e., first sentence
of the method documentation), collected from non-fork
GitHub Java repositories with at least 300 commits, 50
contributors, and 25 stars. Such instances are in the form
⟨summary, code⟩ and, as for CoderEval [37], we inverted
the input and the output i.e., ⟨code, summary⟩. Mastropaolo
et al. analyzed such pairs to ensure their quality. We manually
analyzed and cleaned them further (e.g., “Adds an @link
CarrierService to the @linkCarrier” into
“Adds an CarrierService to the Carrier”), as
we had done for CoderEval. No instances were removed
during such a manual analysis.

We remove the instances from the test sets which appear in
the training sets of TL-CodeSum and Funcom. As a result, we
remove ten instances from CoderEval, which are present only
in the TL-CodeSum training set.
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TABLE I
DIFFERENT SELECTIONS FOR TL-CodeSum AND Funcom TRAINING SETS.

Selection TL-CodeSum Funcom
Full 53,597 1,184,438

SIDE0.5 50,073 1,080,649
SIDE0.6 48,146 1,031,647
SIDE0.7 44,853 952,265
SIDE0.8 38,733 813,998
SIDE0.9 26,258 540,170

B. Study Methodology

To answer RQ0, we use SIDE to compute the degree
to which the summaries of the studied datasets document
their corresponding code. We did this for each instance of
the training sets included in TL-CodeSum and Funcom. To
understand the coherence of the training sets, we analyze
the average and the distributions of the SIDE scores of the
instances.

To answer RQ1, we use the SIDE-based filter we define in
Section II. We use five threshold values, i.e., 0.5, 0.6, 0.7, 0.8,
and 0.9. We do not use thresholds lower than 0.5 because they
would result in negligible dataset reductions (lower than 10%
for both), as we will observe in the results of RQ0. We report
information about the different datasets in Table I. We apply
each filter on the training sets of TL-CodeSum and Funcom.
Such filtering leads to the definition of five new versions of
both datasets.

We fine-tune a pre-trained Transformer-based model for
each dataset version, i.e., both the base one and its six
filtered versions, producing 12 fine-tuned models. We choose
to leverage the pre-trained CodeT5+ [36] since it has been
largely used for code-related tasks [42], [43], [44] and, more
important, in the code summarization approaches described
above. This model is built on the backbone of the well-
known T5 model by Raffel et al. [15], yet it benefits from
specific enhancements tailored for code understanding and
generation tasks. During the pre-training phase, CodeT5+
is first trained on unimodal data, which includes code and
comments, employing a combination of pre-training objectives
such as span-denoising [15] and Causal Language Modeling
[45], [46]. Then, it is pre-trained on bi-modal data where
pre-training objectives such as text-code contrastive learning,
text-code matching, and text-code causal language modeling
are employed. It comes with different variants: (i) CodeT5+
220M, (ii) CodeT5+ 770M, (iii) CodeT5+ 2B, (iv) CodeT5+
6B, and (vi) CodeT5+ 16B. Since our experimental design
would require training, validating and testing 12 models, we
decided to fine-tune the CodeT5+ variant featuring 220M
trainable parameters. This choice aligns with the goal of our
investigation: Rather than proposing a new code summariza-
tion technique, we aim to use a model that offers a favorable
balance between size and training time while still allowing us

to observe the relevant phenomenon (if present).
Considering the extensive array of our experiments, we fine-

tune for 20 epochs using a batch size of 16. Additionally, we
restrict the input length to 512 tokens, and the output to 128
tokens, consistent with previous studies leveraging the two
datasets we used [47], [48], [49]. In addition, we conduct the
fine-tuning using the standard hyperparameters for CodeT5+,
which include the AdamW optimizer [50] and a learning rate
of 2e-5, which is the one recommended for (Code)T5 and also
used in works leveraging such models [51], [52], [53].

To prevent overfitting, we employ early stopping [54]. After
each epoch, we assess the performance of the models by
computing the number of correct predictions on the validation
set. In line with similar research [51], [52], we implement
early stopping with patience of 5 epochs and a delta of 0.01.
This means that training will stop if the model’s performance
does not improve by at least 0.01 for five consecutive epochs.
We then select the best-performing checkpoint before early
stopping. We fine-tune a CodeT5+ model for each training set
derived from the selection strategy i.e., 12 (2 datasets × six
variants).

After training the models, we assess their performance
on the test set dataset that, as previously explained, are the
CoderEval [37], and the one from Mastropaolo et al. [38]
which we refer to as the golden sets.

In the inference phase, we employ a beam search decoding
strategy. In detail, with k ∈ {1, 3, 5}, we allow each model
to generate the k most probable candidate summaries for
the given code. To evaluate the generated summaries of
each model, we compute the following metrics: BLEU [34],
METEOR [40], and ROUGE-L [35]. BLEU is a metric that
expresses, within a range from 0 to 1, the similarity between
a generated text (candidate) and the target one (oracle). It
computes the percentage of n-grams of the generated text
that appear in the target, where n ∈ {1, 2, 3, 4}. METEOR
is computed as the harmonic mean of unigram precision and
recall, with the latter weighted higher than the former. It ranges
from 0 to 1. ROUGE-L is computed as the length of the
longest common subsequence (LCS) between the generated
text and the target one and measures the recall by considering
the proportion of the LCS relative to the length of the target
text. We do not use SIDE [33] as it was employed for selecting
training instances and could therefore be unnaturally biased
in favor of models trained on filtered datasets. Also, we
do not compute the percentage of exact matches for three
reasons. First, exact matches might underestimate the actual
performances of the model. Indeed, an exact match implies
a correct summary, but many alternative summaries might be
as correct (or even more correct, in theory) as the ones in
the ground truth for the very nature of this task. Second (also
related to the previous point), CoderEval [37] provides two
summaries for each coding instance, namely original (i.e., the
docstring collected from the original source code), and human
(i.e., the docstring written from scratch by developers during
the benchmark creation [37]). The model could have correctly
generated only one of them, which are, by definition, both
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Fig. 2. Distribution of SIDE scores for TL-CodeSum and Funcom training
instances.

correct alternatives, thus leading to inconsistent results. Third,
the dataset provided by Mastropaolo et al. [38] includes three
different yet semantically equivalent code summaries for each
Java method. As previously noted, each of these alternative
descriptions is a valid candidate summary.

We also perform statistical hypothesis tests (Wilcoxon
signed-rank test) [55] and Cliff’s delta effect size [56] to
compare the distributions of the BLEU-4, METEOR, and
ROUGE-L of the predictions generated by the different models
trained on the filtered training sets with those of the models
trained on the full training sets. We use Holm’s correction [57]
to adjust the p-values for the multiple tests. We reject the null
hypothesis (there is no difference between the effectiveness of
two given models) if the p-value is lower than 0.05.

Finally, we study the Pareto front to analyze the cost-benefit
trade-offs between the effectiveness of the models trained on
the different selections of TL-CodeSum and Funcom (benefit,
measured with i.e.,, BLEU, METEOR, and ROUGE-L) and
the corresponding training dataset size (cost).

To answer RQ2 we compare the selection strategy with
SIDE0.9 (i.e., the most restrictive selection), with a Random
baseline. In detail, we randomly sample the same number
of training instances as those selected with SIDE0.9 from
each dataset. We compare the effectiveness of the models
trained with the training instances selected with SIDE0.9 and
Random measured in terms of the previously described metrics
(i.e., BLEU-4, METEOR, and ROUGE-L). Again, we perform
statistical hypothesis tests (Wilcoxon signed-rank test) [55]
and compute the Cliff’s delta effect size [56] to compare the
distributions of BLEU-4, METEOR, and ROUGE-L of the

predictions generated by the SIDE0.9 model and the Random
baseline. We use Holm’s correction [57] to adjust the p-values
for the multiple tests. We reject the null hypothesis (there is
no difference between the two models) if the p-value is lower
than 0.05.

IV. RESULTS

In this section, we present the outcomes of our study,
addressing the research questions formulated in Section III.

A. RQ0 Consistency Analysis

Fig. 2 reports the SIDE score distributions for the training
instances of the examined datasets’. We can observe that
most of the instances of the two datasets exhibit high-quality
features, according to SIDE. In detail, the mean SIDE scores
for the training sets are 0.83 and 0.81 for TL-CodeSum and
Funcom, respectively. This result denotes a high coherence
in the ⟨code, summary⟩ pairs. Also, we can notice that,
for more than 90% of the instances (93% for TL-CodeSum
and 91% for Funcom), the SIDE score is greater than 0.5.
While such a percentage is quite high, it is worth noting that,
as a consequence, a large number of instances (3,525 and
103,789 for TL-CodeSum and Funcom, respectively) exhibit
a SIDE score lower than 0.5. Besides, 51% and 54% of the
instances from TL-CodeSum and Funcom, respectively, have a
SIDE score lower than 0.9. While many of such instances are
not necessarily detrimental to the model, they might not be
beneficial either. Such distributions show a sufficiently high
margin of improvement for both datasets.

Answer to RQ0

The training sets from both TL-CodeSum and Funcom
exhibit a high SIDE score, on average (> 0.8 for both).
Still, over half the instances have a sub-optimal SIDE
score (< 0.9). This distribution suggests that a dataset
reduction approach could improve the performance of
an automated code summarization model trained on it.

B. RQ1. Selection Strategy Impact

Table II reports the results obtained from the different
models fine-tuned on the full and filtered training sets, while
the detailed results of the Wilcoxon signed-rank tests are in
our replication package for space reasons [59]. The column
“Dataset” indicates the training set from which the selections
were performed, while the “Selection” column reports the
SIDE threshold used to filter the training sets i.e., full, and
SIDE0.5 up to SIDE0.9. For example, the first line in corre-
spondence of TL-CodeSum (i.e., Full) represents the model
fine-tuned on the full training set of TL-CodeSum, while the
one below i.e., (SIDE0.5) represents the model fine-tuned on
the training set filtered with SIDE score greater than 0.5.
Furthermore, we report the number of tokens seen during
the fine-tuning process (“Tokens” column) and the percentage
of the saved training instances with respect to the complete
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TABLE II
PERFORMANCE METRICS ON TOP-1 PREDICTIONS FOR CODEREVAL.

CoderEval-Original [37] CoderEval-Human [37] Mastropaolo et al. [38]
Dataset Selection #Tokens (%) Saving BLEU-4 METEOR ROUGE BLEU-4 METEOR ROUGE BLEU-4 METEOR ROUGE

TL-CodeSum [24]

Full ↑ 7.9M – 11.72 17.84 35.01 6.41 14.28 30.51 6.37 13.04 27.09

SIDE0.5 7.4M 7% 12.41 17.73 35.41 6.32 14.28 31.08 6.36 12.93 27.47
SIDE0.6 7.1M 10% 13.22 17.98 36.49 6.98 14.03 31.06 6.61 13.07 27.49
SIDE0.7 6.6M 16% 13.17 17.93 36.14 6.79 14.83 31.90 6.30 12.95 27.60
SIDE0.8 5.6M 28% 11.99 17.54 34.60 6.23 13.94 29.72 6.02 13.01 27.63
SIDE0.9 ↓ 3.7M 51% 11.60 17.07 33.67 6.56 14.19 30.53 5.62 12.75 27.26

Funcom [9]

Full ↑ 108.7M – 14.25 17.61 36.53 5.93 12.95 28.36 6.77 12.94 28.00

SIDE0.5 99.5M 9% 15.04 18.16 37.08 6.15 13.14 29.05 6.84 12.87 27.93
SIDE0.6 95.0M 13% 16.19 19.30 38.38 7.02 14.07 30.25 7.03 12.99 28.33
SIDE0.7 87.7M 20% 14.77 18.92 37.39 7.49 14.19 30.14 6.62 12.79 27.78
SIDE0.8 74.2M 31% 14.10 18.34 37.04 6.53 13.38 28.45 6.93 12.78 27.99
SIDE0.9 ↓ 49.0M 54% 13.65 18.08 37.12 6.78 13.61 30.07 6.81 12.95 28.07

training sets (“Saving” column). Finally, the columns “BLEU-
4”, “METEOR”, and “ROUGE” report the performance in
terms of percentage for the golden sets including CoderEval-
Original, CoderEval-Human, and the one by Mastropaolo
et al. [38].

In the following, we discuss results achieved through
the SIDE-based selection by comparing them against the
CoderEval-Original ground truth. Looking at the rows corre-
sponding to TL-CodeSum, we observe that the model trained
with the complete training set achieves 11.72% BLEU-4,
17.84% METEOR, and 35.01% ROUGE-L. Surprisingly, even
though such a model underwent fine-tuning with the full
training set, it is not the one exhibiting the best results in
terms of these metrics. Instead, the model fine-tuned with
the selection strategy with SIDE0.6 is the one that achieves
the best results for all metrics despite being trained with
∼1M fewer tokens during training than the one leveraging
the whole corpus of code tokens. If we look at the “minimal”
selection strategy i.e., SIDE0.9, we observe a limited drop in
performance (↓ 0.12, ↓ 0.77, and ↓ 1.34) while saving the 51%
of the training instances.

Looking at the rows corresponding to Funcom, we observe
the same trend as for TL-CodeSum. The model fine-tuned on
the whole training set (108.7M tokens) performs worse than
the models fine-tuned with less training data. We can notice
a negligible drop in performance for SIDE0.9 (49.0M tokens)
on BLEU-4 metric (↓ 0.60), while achieving slightly better
performance on METEOR (↑ 0.47) and ROUGE-L (↑ 0.59).

The Wilcoxon signed-rank tests indicate that there is no
statistically significant difference between the results obtained
by the model fine-tuned on the full training set and those fine-
tuned on the filtered training sets (minimum p-value > 0.2
for TL-CodeSum, and p-value > 0.08 for Funcom). Also, the
Cliff’s δ effect size is always negligible for the same compar-
isons. Such results occur despite the most aggressive selection
only leveraging 46% of the original training instances. In other
words, there is little to lose in terms of summary quality when
the model training set is heavily optimized.

Similar observations apply to the CoderEval-Human
dataset. With no statistically significant differences, (minimum
p-value > 0.23 for TL-CodeSum, and p-value > 0.15 for
Funcom), according to the Wilcoxon signed-rank test and
a negligible Cliff’s δ effect size, the models specialized to
produce meaningful code summaries with the filtered dataset
have comparable performance to those fine-tuned with the
original dataset.

For example, the model instructed with “high-quality” ex-
amples included in the SIDE0.9 dataset — even if trained with
4.2M fewer tokens — obtains a slightly higher BLEU-4 (↑
0.15) and a slightly lower METEOR (↓ 0.09) and ROUGE-L
(↑ 0.02). We also observed no substantial differences in the
context of Funcom. In this case, however, the models fine-
tuned with the filtered training sets perform slightly better
than the model fine-tuned on the full-training set in terms of
all the metrics (↑ 0.85 BLEU-4, ↑ 0.66 METEOR, and ↑ 1.71
ROUGE-L).

Finally, the conclusions above (no statistically significant
differences, negligible Cliff’s δ effect sizes) are further con-
firmed on the dataset by Mastropaolo et al. [38]. The model
that underwent fine-tuning with the full-sized TL-CodeSum
training set performs only slightly better than the models
fine-tuned on the filtered datasets. At the same time, it is
interesting to notice how—although differences are still not
statistically significant—the model fine-tuned on the filtered
Funcom training set with SIDE0.6 exhibits marginally better
performance compared to the model that was exposed to the
largest amount of code tokens, i.e., the full-sized Funcom
dataset, during training. This suggests that there may be
contexts for which the selection based on the SIDE metric
helps to prune out instances worsening the summarization
quality.

Fig. 3 depicts the Pareto fronts for the models’ performance
and training dataset size across the different selections of
the TL-CodeSum and Funcom datasets (i.e., Full, SIDE0.5,
SIDE0.6, SIDE0.7, SIDE0.8, SIDE0.9), evaluated on the three
benchmarks i.e., CoderEval-Original, CoderEval-Human, and
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Fig. 3. Pareto front for TL-CodeSum [24] (top) and Funcom [58] (bottom). From left to right, the chart shows the number of tokens for SIDE0.9, SIDE0.8,
SIDE0.7, SIDE0.6, SIDE0.5, and the full dataset.

Mastropaolo et al..
For the models trained on the TL-CodeSum selections,

we observe that as the training dataset size increases from
SIDE0.9 with 3.7M tokens to SIDE0.7 with 6.6M tokens, the
ROUGE scores remain almost constant. A slight improvement
in ROUGE scores can be observed at 7.1M tokens (SIDE0.6)
on CoderEval-Original and CoderEval-Human. However, at
larger sizes with 7.4M tokens (SIDE0.5) and the 7.9M tokens
(Full) the scores decline. At the same time, the METEOR
and BLEU-4 scores remain almost constant across all dataset
sizes, showing minimal improvements. In the Mastropaolo
et al. dataset, the three metrics remain constant across all
filtering levels, evidencing that increasing dataset size does
not meaningfully impact the models’ effectiveness.

The models trained on Funcom selections exhibit similar re-
sults. As the dataset size decreases from the Full set of 108.7M
tokens through SIDE thresholds down to SIDE0.9 with 49.0M,
the ROUGE scores exhibit slight improvement up to SIDE0.6

but remain relatively stable across the golden sets, while
METEOR and BLEU-4 scores follow the trend of the ROUGE
scores although in a less noticeable way. For CoderEval
Human, ROUGE scores exhibit minor improvements, while
METEOR and BLEU-4 scores show no significant changes.
For the Mastropaolo et al. dataset, the effectiveness remains
stable across the three metrics and training sizes, further
underscoring that increasing the training dataset size has a
small impact on performance for high-quality test sets.

Although we observe slight improvements with larger
dataset selections (specifically at SIDE0.6 and SIDE0.7), the
gains are minimal, resulting in a generally flat trend on the
Pareto front. Finally, as shown in Fig. 3, increasing the training
dataset size does not lead to substantial improvements in
downstream performance. Based on our results, we can state
that increasing dataset size provides negligible improvements,
with SIDE0.9 achieving an optimal balance between perfor-
mance and resource efficiency.

Answer to RQ1

Fine-tuning neural code summarization models with
coherent code-comment instances selected through
SIDE leads to performances comparable to those ob-
tained when fine-tuning the model on the complete
training sets, with a reduction of up to 50% of the
training instances.

C. RQ2. Comparison with the Random Baseline

Table III reports the performance achieved by the mod-
els trained on the SIDE0.9 and Random selections for both
datasets (i.e., TL-CodeSum and Funcom). We report such
information as described in Section IV-B. Instead, Table IV
reports the results of the Wilcoxon signed-rank tests with the
adjusted p-values (column p-value), and the corresponding
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TABLE III
PERFORMANCE METRICS ON TOP-1 PREDICTIONS FOR SIDE0.9 AND Random.

CoderEval-Original [37] CoderEval-Human [37] Mastropaolo et al. [38]
Dataset Selection BLEU-4 METEOR ROUGE BLEU-4 METEOR ROUGE BLEU-4 METEOR ROUGE

TL-CodeSum [24]
SIDE0.9 11.60 17.07 33.67 6.56 14.19 30.53 5.62 12.75 27.26
Random 10.77 16.36 32.67 6.12 13.44 28.78 5.85 12.89 27.13

Funcom [9]
SIDE0.9 13.65 18.08 37.12 6.78 13.61 30.07 6.81 12.95 28.07
Random 13.67 17.95 36.09 6.88 13.95 29.90 5.84 12.32 27.12

TABLE IV
RESULTS COMPARISON FOR CODESUM AND FUNCOM

CoderEval-Original [37] CoderEval-Human [37] Mastropaolo et al. [38]
Dataset Metric p-value Cliff δ p-value Cliff δ p-value Cliff δ

TL-CodeSum [24]
BLEU-4 1.0 0.03 0.5 0.03 1.0 0.02
METEOR 1.0 0.02 0.5 0.014 0.4 -0.013
ROUGE-L 1.0 0.03 0.5 0.052 1.0 0.01

Funcom [9]
BLEU-4 1.0 -0.004 1.0 -0.021 0.017 0.042
METEOR 1.0 0.01 1.0 0.014 0.11 0.025
ROUGE-L 1.0 0.03 1.0 0.013 0.07 0.021

Cliff’s δ effect sizes (column Cliff’s δ) for each golden
set, including CoderEval-Original, CoderEval-Human, and
Mastropaolo et al.

The results are quite comparable for the models trained on
the TL-CodeSum dataset selections. In detail, on CoderEval-
Original, the model trained on the SIDE0.9 selection achieves
slightly better results (↑ 0.83, ↑ 0.71, ↑ 1.0), even though
without statistically significant statistical differences (p-value
= 1.0), and negligible effect sizes for all metrics (∼ 0.00). We
obtain consistent results for CoderEval-Human. Instead, we
observe slight differences in performance for the Mastropaolo
et al. golden set. Specifically, the Random selection allows
to achieve better BLEU-4 (↑ 0.23) and METEOR (↑ 0.14),
but lower ROUGE (↓ 0.13). Again, we observe no statistically
significant differences and negligible effect sizes.

What was observed above is also generally true for the
models trained on the Funcom. The model trained on the
SIDE0.9 selection, achieves better ROUGE (↑ 1.03, ↑ 0.17,
↑ 0.95) on all the three golden sets. Conversely, for the
BLEU and METEOR metrics, the models show alternate better
performance, except on the Mastropaolo et al. golden set.
Table IV reports a statistically significant difference between
the performance of the two models for the BLEU-4 metric,
although with negligible effect sizes.

Answer to RQ2

Filtering training instances based on code-comment
coherence provides models with comparable effective-
ness to those trained on randomly selected instances.

V. DISCUSSIONS

Our findings challenge the conjecture that code-comment
coherence, as measured by SIDE [33], is a critical quality
attribute for filtering instances of code summarization datasets.
By selecting ⟨code, summary⟩ pairs with high-coherence for

training allow to achieve the same results that would be
achieved by randomly selecting such a number of instances. At
the same time, we observed that reducing the datasets size up
to 50% of the training instances does not significantly affect
the effectiveness of the models, even when the instances are
randomly selected. These results have several implications.

First, code-comment consistency might not be a problem in
state-of-the-art datasets in the first place, as also suggested in
the results of RQ0. Also, the DL models we adopted (and,
probably, bigger models as well) are not affected by incon-
sistent code-comment pairs, even when these inconsistencies
are present in the training set. Despite the theoretical benefits
of filtering by SIDE [33], that is the state-of-the-art metric
for measuring code-comment alignment, our results indicate
its limitations in improving the overall quality of the training
sets for code summarization task. Nevertheless, other quality
aspects of code and comments that have not been explored yet
(such as readability) may be important for smartly selecting
the training instances. Future work should aim to explore such
quality aspects further.

Our results clearly indicate that state-of-the-art datasets
contain instances that do not contribute to improving the
models’ effectiveness. This finding is related to a general phe-
nomenon observed in Machine Learning and Deep Learning.
Models reach convergence when they are trained for a certain
amount of time (epochs). Additional training provides smaller
improvements and increases the risk of overfitting. We show
that the same is true for data. Model convergence, in terms of
effectiveness, is achieved with fewer training instances than
previously assumed. By limiting the number of epochs, it
may be possible to reach model convergence with a subset
of training data, maintaining model effectiveness, reducing re-
source demands and minimizing the risk of overfitting. Future
work could explore different criteria for data selection that
identify the most informative subsets for training. Conversely,
this insight suggests that currently available datasets suffer
from poor diversity (thus causing the previously discussed
phenomenon). This latter insight constitutes a clear warning
for researchers interested in building code summarization
datasets, which should include instances that add relevant
information instead of adding more data, which might turn
out to be useless.

Finally, it is worth pointing out that another benefit of the
reduction we performed is the environmental impact. Reducing
the number of training instances implies a reduced training
time, which, in turn, lowers the resources necessary to perform
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training and, thus, energy consumption and CO2 emissions.
We performed a rough estimation of the training time across
different selections of TL-CodeSum and Funcom datasets and
estimated a proxy of the CO2 emissions for each model
training phase by relying on the ML CO2 impact calculator1

[60]. Such a calculator considers factors such as the total
training time, the infrastructure used, the carbon efficiency,
and the amount of carbon offset purchased. The estimation
of CO2 emissions needed to train the model with the Full
selection of Funcom (∼ 200 hours) is equal to 26.05 Kg,
while with the optimized training set, i.e., SIDE0.9 (∼ 90
hours), the estimation is 11.69 Kg of CO2 (-55% emissions).
While we recognize that this method provides an estimation
rather than a precise measurement, it offers a glimpse into the
environmental impact of applying data reduction.

VI. THREATS TO VALIDITY

This section describes the threats that could affect the
findings of our study.

Construct validity threats concern the relationship between
theory and observation. A first threat is related to how we
assess the quality of the generated summaries. We leverage
metrics widely used in literature and, specifically, BLEU-4,
METEOR, and ROUGE. We are aware that such metrics may
not fully reflect the developers’ perception of a summary
quality.

Another threat could be related to the choice of SIDE as a
driver for selecting a training set based on summary coherence.
As shown in previous work [33], this metric correlates with
human-based summary evaluation better than other state-of-
the-art metrics.

Internal validity threats concern factors internal to our
study that could affect our findings. One factor is related to
the hyperparameter calibration of the performed training. As
explained in Section III, our choices are based on those of
previous studies [51], [52].

Another factor is the choice of the SIDE cut thresholds.
We have chosen five thresholds varying from 0.5 to 0.9, and
reported the findings for such levels of dataset filtering. While
we did not explore the full range of SIDE values, we have
evaluated, with a discretization of 0.1, the whole range from
0.5 above. We conjecture that lower values would not show
results much different from the full datasets, because the 0.5
threshold indicates a very small reduction (7%-9% on the two
datasets).

Finally, we are aware that a more accurate computation of
training times would require multiple runs. However, this was
unfeasible given the number of configurations to evaluate and
the training time required for each of them.

Conclusion validity threats concern the relationship be-
tween the experimentation and outcome. The study is mostly
observational. Therefore, we report and discuss results through
descriptive statistics. However, wherever appropriate—and in
particular for RQ1 and RQ2, we complement them with

1https://mlco2.github.io/impact/#compute

suitable statistical procedures (Wilcoxon rank-sum test and
Cliff’s d effect size). Also, since multiple tests have been
performed, we adjust the p-values using Holm’s correction
procedure [57].

External validity threats concern the generalizability of
our findings. We have considered two datasets for the train-
ing. These datasets have been specifically designed for code
summarization and cleaned up using the CAT approach by
Shi et al. [30]. As for the test set, we have considered two
datasets that (i) do not overlap with the training set and (ii)
have been evaluated by humans. Although these datasets are
particularly suitable for the study reported in this paper, we
cannot exclude that the application of the selection strategy
on other datasets, and in particular datasets related to different
programming languages or application domains, might lead to
different results.

VII. RELATED WORK

In this section, we examine key literature concerning the
impact of data quality on neural models for automating soft-
ware engineering practices, with a particular focus on code
summarization. Following this, we provide a section covering
the main approaches in code summarization literature.

A. The Importance of Data Quality for DL-Based Methods in
Code Summarization

Data quality is essential for the success of DL methods
designed to automate software engineering tasks. Models
trained on noisy data frequently suffer significant performance
degradation when deployed in real-world settings. A recent
study by Shi et al. [61] examines various factors that could
impact the evaluation of code summarizers, including metrics,
code preprocessing operations, and datasets. Their empirical
study showed that these elements significantly influence the
evaluation of code summarization models. Specifically, Shi
et al. observed that certain code preprocessing operations (e.g.,
converting all tokens to lowercase) could substantially affect
performance. This can either enhance the model’s effectiveness
or lead to a decline in performance, showcasing the fundamen-
tal role of preprocessing strategies to either boost or impair
model outcomes.

LeClair and McMillan [58] also explored the effects of
different preprocessing decisions on datasets used for code
summarization. Specifically, they analyzed how splitting train-
ing and test datasets by function versus by project influences
model performance.

Gros et al. [62] investigate the relationship between code
comments and code itself, particularly exploring the premise
that generating code comments is akin to translating between
natural languages. This conceptual alignment has facilitated
using models and evaluation metrics from Natural Language
Processing (NLP) in tasks like code summarization. Gros et al.
assessed how code-comment datasets, compare with datasets
used for natural language translation. Specifically, they con-
trasted each code-comment dataset against WMT19 [63], a
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renowned corpus utilized for training natural language trans-
lators. The outcomes of their research indicated that code
comments are more repetitive than English sentences found in
natural language, a characteristic that influences performance
evaluation metrics.

Sun et al. [64] illustrate the issue of poor natural language
data quality within the context of code search—specifically, re-
trieving the “closest” code matching a natural language query
in a codebase. By implementing a semantic query cleaning
module for code search datasets, Sun et al. showed that their
filtering framework not only enhances the accuracy of models
trained on the filtered dataset but also conserves computing
resources. Along these lines, Li et al. [65] investigated the
quality of commit messages and found that (i) the quality of
commit messages plays a fundamental role when it comes to
software defects, and (ii) the overall quality of these messages
declines over time, despite the developers’ belief who think
their commit messages are improving.

Xu et al. [66] explored the impact of data quality on just-
in-time obsolete comment detection. They empirically showed
that applying a set of manually derived rules could enhance
accuracy by up to 10.7%

Shi et al. [30] implemented a similar approach to address
data quality issues in code summarization benchmarks by
introducing CAT (Code-comment Cleaning Tool). This tool
can identify noisy data in various programming languages,
including Java and Python. Specifically, the rule-based method
(i.e., CAT) developed by Shi et al. is designed to detect
specific patterns of noisy data at both the comment and code
levels, based on a taxonomy of data preprocessing noises
identified across four popular datasets. An initial evaluation
with CAT showed that commonly used code summarization
benchmark datasets for Python and Java include noisy data
pairs ⟨code, comment⟩, ranging from 31% to 66%. These
noisy elements were either “fixed” to decrease their noise level
or completely removed. Following this cleanup, state-of-the-
art neural code summarization techniques were retrained from
the ground on these refined benchmarks. The performances of
the different models were then compared against the cleaned
test datasets processed using CAT. This comparison indicated
that the optimized training dataset significantly improved
summarization accuracy and overall performance.

B. Automated Code Summarization

Different studies have explored the automation of code
summarization, with three primary approaches emerging in
the literature: Information Retrieval (IR), Deep Learning (DL),
and hybrid methods combining both techniques.

One of the first approaches to DL-based code summarization
is the work by Iyer et al. [67], who introduced an RNN-
based model with an attention mechanism for generating
code summaries. They used an encoder-decoder architecture,
proposing CODE-NN to generate summaries. It was trained
on code-description pairs from StackOverflow and it demon-
strated substantial improvements over traditional approaches in

generating summaries, highlighting one of the first evidence
of DL effectiveness for code summarization tasks.

Zhang et al. [10] proposed a retrieval-based neural model,
Rencos, which combines information retrieval (IR) techniques
with neural machine translation (NMT) specifically for code
summarization. They first train an encoder-decoder model.
Then, during the testing phase, they retrieve the most similar
snippets from the training set, in terms of syntax and seman-
tics, and encode them with the input. Finally, after fusing them
it predicts the summary.

One of the first works exploring Transformer-based ap-
proaches for code summarization is the one by Ahmad et al.
[68]. In their work, they leverage the self-attention mechanism
within Transformers to model the complex, long-distance
dependencies in source code, aiming to generate appropriate
summaries. Their results demonstrated that Transformers are
effective for code summarization tasks.

With the advent of Large Language Models (LLMs), sub-
stantial progress has been made in automating code summa-
rization. LLMs are capable of few-shot learning i.e., pro-
viding task-specific examples in the prompt allowing the
model to perform the requested task. As first steps for LLM-
based code summarization, Ahmed et al. [42] introduced
the Automatic Semantic Augmentation of Prompts (ASAP)
technique. This latter enhances LLMs performance by adding
structured semantic information in the prompts. ASAP insert
(i) repository context, (ii) tagged identifiers, and (iii) data flow
graphs directly into the prompt, guiding the model toward a
wider knowledge of the code structure and functionality. Such
technique allowed models like Code-Davinci and GPT-3.5 to
achieve state-of-the-art performance on multiple programming
languages for the code summarization task.

As part of advancing LLM-based code summarization, Sun
et al. [69] conducted a study examining various prompting
strategies and model configurations for improving perfor-
mance in code summarization task. They evaluated prompting
techniques such as zero-shot, few-shot, and chain-of-thought,
finding that simpler approaches often performed as well as
more complex methods.

C. Code-comment Coherence

Detecting code comments that result to be incosistent with
respect to the given code has been subject of several works.
Tan et al. [70] proposed iComment, a tool that leverages NLP
properties, machine learning models, and program analysis
techniques to extract rules for a decision tree classifier able
to detect potential incosistencies between comments and code.
They evaluated their tool to large-scale projects such as Linux,
Mozilla, Apache, and Wine, finding several inconsistencies,
including bugs and bad comments.

Liu et al. [71], instead, focused on the detection of out-
dated comments during code changes. The authors proposed
a machine learning-based approach that leverages 64 features
related to code, comments, and their relationship before and
after code changes to identify outdated comments. Using a
random forest classifier, they evaluated their approach on
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several open-source projects and demonstrated its effectiveness
in detecting outdated comments, achieving high precision and
recall rates.

Wang et al. [72] proposed DComment, a framework to
evaluate the quality of comments in source code. By analyz-
ing both the code and its associated comments, DComment
identifies meaningful patterns and relationships to determine
whether a comment is coherent and relevant. DComment
showed a strong ability to generalize across different projects
on multiple datasets.

Xu et al. [73] proposed MCCL, that combines method com-
ment detection and confidence learning to identify and miti-
gate inconsistencies. The proposed approach uses advanced
encoding techniques, including multi-head attention and graph
neural networks, to analyze the relationships between code and
comments. Additionally, a denoising component is employed
to address noisy data and labeling errors, improving the detec-
tion process. MCCL was evaluated on over 1,500 open-source
projects, demonstrating superior performance compared to
existing methods, with a significant improvement in precision,
recall, and F1-score.

In this work we adopt SIDE [33] as an approach for
measuring code-comment coherence instead of the previously-
mentioned approaches because, differently from them, (i) it has
been shown to highly correlate with human judgment, and (ii)
it allows us to filter instances based on a threshold (multiple
selectivity levels).

VIII. CONCLUSION

We presented an empirical investigation in which we studied
how filtering out incoherent code-comment pairs in code sum-
marization datasets affects the DL models trained to tackle this
task in terms of effectiveness and removed training instances.

On the one hand, our results show that reducing the number
of instances in the training set using a coherence-based ap-
proach driven by the SIDE metric [33] does not significantly
impact the models’ effectiveness, even when applying the
strictest filter that reduces the training set of over 50%. On the
other hand, we found that randomly selecting the same number
of instances instead of selecting them based on their code-
comment coherence allows us to achieve comparable results.

Our future research agenda includes investigating other
quality aspects for selecting training data, such as instance
diversity and readability. Furthermore, we plan to investigate
how far we can go in randomly removing instances without
affecting the quality of generated code summaries.

IX. DATA AVAILABILITY

The study dataset and scripts used for the analysis are avail-
able and documented in our online replication package [59].
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