
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Automatic Identification of Game Stuttering via
Gameplay Videos Analysis

EMANUELA GUGLIELMI, DEVISER, University of Molise, Italy

GABRIELE BAVOTA, Università della Svizzera italiana, Switzerland

ROCCO OLIVETO, DEVISER, University of Molise, Italy

SIMONE SCALABRINO, DEVISER, University of Molise, Italy

Modern video games are extremely complex software systems and, as such, they might suffer from several types of post-release issues.
A particularly insidious issue is constituted by drops in the frame rate (i.e., stuttering events), which might have a negative impact on
the user experience. Stuttering events are frequently documented in the million of hours of gameplay videos shared by players on
platforms such as Twitch or YouTube. From the developers’ perspective, these videos represent a free source of documented “testing
activities”. However, especially for popular games, the quantity and length of these videos make impractical their manual inspection.
We introduce HASTE, an approach for the automatic detection of stuttering events in gameplay videos that can be exploited to
generate candidate bug reports. HASTE firstly splits a given video into visually coherent slices, with the goal of filtering-out those
that not representing actual gameplay (e.g., navigating the game settings). Then, it identifies the subset of pixels in the video frames
which actually show the game in action excluding additional elements on screen such as the logo of the YouTube channel, on-screen
chats etc. In this way, HASTE can exploit state-of-the-art image similarity metrics to identify candidate stuttering events, namely
subsequent frames being almost identical in the pixels depicting the game. We evaluate the different steps behind HASTE on a total
of 105 videos showing that it can correctly extract video slices with a 76% precision, and can correctly identify the slices related to
gameplay with a recall and precision higher than 77%. Overall, HASTE achieves 71% recall and 89% precision for the identification of
stuttering events in gameplay videos.

CCS Concepts: • Software and its engineering → Software evolution;Maintaining software; Software defect analysis.

Additional Key Words and Phrases: Video game, Performance

ACM Reference Format:
Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino. 2023. Automatic Identification of Game Stuttering via
Gameplay Videos Analysis. In Proceedings of Transactions on Software Engineering and Methodology (TOSEM). ACM, New York, NY,
USA, 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

The video game industry is a billion-dollar business, with a market value of more than $95B in the US alone, as of
2021[30]. Just like other software systems, video games can be affected by several types of functional and nonfunctional
issues.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/XXXXXXX.XXXXXXX

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

Some of such problems are more relevant for video games than for other types of software. One of them is constituted
by drops in the frame rate (also referred to as “stuttering”). Such an issue makes the user experience not only less
entertaining, but even frustrating when it creates impediments for properly playing the game.

The relevance of stuttering events for game developers is well-known. Politowski et al. [25] reported that the
developers partially automated game performance testing for two out of the five games considered in their study.
Naughty Dog reportedly employed specialized profiling tools [34] while developing and testing The Last of Us for
detecting stuttering events. Finally, Truelove et al. [35] report that game developers agree that Implementation response

problems may severely impact the game experience.
For these reasons, researchers recently introduced techniques to detect areas of the game affected by stuttering

(see e.g., [37]). While these techniques could help in game testing, it is practically impossible to thoroughly test all
the possible interactions between the player(s) and the environment. Therefore, stuttering events might still occur
in specific conditions (e.g., when many players are in the same area of the game) that are not detected before the
release and can only be reported by the end users. This could happen through classic bug-reports possibly accompanied
by videos documenting the observed behavior. Video-based bug reports are becoming more and more popular, as
also demonstrated by the several research works studying this phenomenon [5, 9, 14, 22]. When it comes to video
games, video-based bug reports become fundamental to report issues such as stuttering events. Besides bug reports
explicitly opened by end users, stuttering events are implicitly documented in the million of hours of gameplay
videos available in platforms such as Twitch [38] or YouTube [47]: Twitch content creators stream, on average, 2.2M
hours of videos every day [40], most of which are gameplay videos. Consider, for example, the gameplay video at
https://youtu.be/1LHHLaSRW8Y?t=79. At minute 01:22, a stuttering event starts and lasts for a few seconds. Developers
could use the information provided in the video to localize the problem and fix it. Previous work explored detecting
different types of issues [13, 36], but no previous work specifically focused on stuttering events.

In this paper, we aim at tackling the problem of automatically finding candidate stuttering events in gameplay videos.
We preliminarily surveyed 26 professional game developers, aiming at understanding to what extent solving such a
problem would be relevant in the first place. Our results suggest that practitioners would be interested in such an
approach and that it would be complementary to tools that they already use (e.g., telemetry [49]).

Fig. 1. Gameplay video with extraneous elements

It might be argued that finding stuttering events is conceptually easy: By definition, stuttering occurs when two or
more subsequent frames in a gameplay video are identical. However, there are several problems to address. First, there

2

https://youtu.be/1LHHLaSRW8Y?t=79

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

are game scenes in which identical consecutive frames do not indicate stuttering (e.g., game settings). Thus, a naive
approach that checks the equality of consecutive frames might falsely report stuttering events. Second, there might be
parts of gameplay videos that do not show the video game itself but other elements, such as the streamer’s face.

Fig. 1 depicts a concrete example of a gameplay video showing, besides the game itself, external elements such as the
player recording the video. In this case, checking the equality of subsequent frames is also not enough, since while the
“game-related pixels” might not change (due to stuttering), the ones depicting the player may change, thus missing the
stuttering identification.

To solve those problems, we introduce HASTE (Hinter for gAme STuttering Events). HASTE works in four steps.
First, it splits a gameplay video into visually coherent slices, based on major changes in the color schema of the frames
shown on screen. Second, HASTE automatically classifies each extracted slice as gameplay or non-gameplay (e.g.,
game settings, advertisement) using a machine-learning model. Third, it further analyzes each video slice classified as
gameplay to identify the parts of the frame actually showing the game (i.e., excluding unrelated elements such as the
player or an on-screen chat). Finally, HASTE checks each pair of consecutive frames and it identifies stuttering events
in which the relevant pixels (i.e., the ones depicting the game) are (almost) identical.

We validate the steps behind HASTE on a total of 105 videos, of which about 10 hours of contents manually analyzed
by the authors. We found that HASTE is accurate both in determining slicing points for the videos (76% precision)
and detecting non-gameplay events to filter them out (90% precision and 88% recall). In terms of stuttering event
identification, HASTE is largely more effective than three simpler baselines with which we compared it, achieving,
overall, 71% recall and 89% precision. Finally, we interviewed two senior game developers aiming at understanding
the applicability of HASTE in an industrial context. They generally provided positive feedback on the usefulness and
applicability of HASTE in a developer’s workflow due to the possibility of accessing a large amount of data available
online. In addition, they highlight a major challenge related to the use of gameplay videos in the first place: HASTE
might find false positives, i.e., stuttering events that are not related to the gameplay video but to other incidental
circumstances (e.g., screen recording software, specific hardware configurations). This is a problem shared with several
approaches and tools typically used by developers (e.g., static code analysis tools). Still, HASTE could provide some
guidance to let developers understand what they should focus on.

2 MOTIVATING STUDY

We ran a survey with game development practitioners to understand the possible relevance of an automated approach
that detects stuttering events in gameplay videos.

2.1 Survey Design

The goal of this study is to answer the following research question: RQ0: To what extent is it useful to identify stuttering

events in video games through the use of gameplay videos? The context is represented by objects (i.e., a survey) and
subjects (i.e., 26 practitioners from the game development industry).

Participants Selection. We recruited participants through Prolific [27], a platform that helps to select participants
for research studies. We looked for candidate participants who (i) were located in the United States and Europe, (ii)
had experience in the field of “Computer Science” and “Information Technology (IT)”, and (iii) declared to be video
game enthusiasts. We initially decided to also have as filter an active job in the video game industry. However, this
resulted in only two candidates available on Prolific. Thus, we removed such a filter and relied on the initial questions
of the survey to discard participants without game development experience. Based on the filters applied, we invited 248

3

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

candidate participants. We payed 5$ to each participant who completed the survey in all its parts (i.e., by also providing
relevant answers to the open questions).

Survey Questions. Participants were initially presented with a welcome page, which explained the goal of the
study, reported its expected duration (∼15 minutes) and other basic information. If they agree to participate, the main
survey started, which consisted of four phases. In the first one we collected demographic information. As a preliminary
question, we asked whether the participant had experience with game development or testing. If the answer to the latter
question was no, the survey stopped and the participant was excluded from the study. Otherwise, we asked additional
information (i.e., job position and number of years of experience, examples of video games they worked on).

In the second phase, we asked questions aimed at understanding whether and how developers identify stuttering events.
Specifically, we asked (i) if they actively try to identify stuttering events during beta testing of a video game; (ii) the
percentage of bug reports that regards stuttering events, in their experience; and (iii) if they use telemetry to detect
stuttering events. Based on the last question, the participants who declared to use telemetry were asked to indicate on a
Likert scale from 1 to 5 (the higher the better): (i) what accuracy level do the telemetry-based tool achieve in detecting
stuttering events, and how complete the information telemetry provides is to (ii) reproduce the issues and (iii) fix them.
The participants had to motivate all their answers in open questions. Finally, we asked if they use other tools to identify
stuttering events.

In the third phase, we asked questions aimed at understanding whether developers use data available online to identify
stuttering events in video games. Specifically, we asked which platforms they usually get data from (YouTube, Twitch,
Steam, Discord, or others) and to add details on how they do that (open answer).

In the fourth phase, we asked question to assess the possible usefulness of an automated approach for identifying issues

in gameplay videos. Specifically, we asked participants to rate, on a Likert scale from 1 to 5 (the higher the better),
the extent to which parts of the gameplay video documenting stuttering events would be useful for (i) replicating the
problems and (ii) fixing them. We also explicitly asked what other pieces of information would be useful to replicate
and fix errors that cause stuttering events. Finally, we asked (iii) to what extent they would be interested in using an
automated approach for detecting stuttering events from gameplay videos on a video game they are developing/testing,
and (iv) whether they would use this approach in combination with other testing approaches they already use or to
replace them. Also in this case, we asked to motivate the answers. We implemented our survey in Google Forms [12].
The complete list of questions and anonymized participants’ answers is available in our replication package [2].

Data Collection and Analysis. We kept the survey available to the invited practitioners for eight days because we
got immediate feedback frommost candidate participants. We collected a total of 53 responses: 3 have been automatically
rejected by the platform because the participants exceeded the allowed time limit; 6 have been excluded since the
participants declared no experience in game development/testing.

We manually analyzed the remaining 44 to assess the quality of the responses provided by the participants. We
discarded the responses for which the open questions were not filled with relevant content, which we used as proxy for
the commitment of the participant.

To evaluate the relevant content, we analyzed the individual responses of the participants. In detail, we analyzed
the completeness and consistency of open-ended responses. Content was assessed as relevant when the response
was complete and directly related to the question. We report some examples of responses that were not considered
consistent with the question asked and, thus, excluded from the assessment. As for the question regarding the use
of telemetry, a participant provided the definition of telemetry: “telemetry is the term used to denote any source of
data [...] There are many popular applications of telemetry in games [...].” However, no motivation was provided. In

4

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

addition, another participant provided for two different questions the same generic answer. Specifically, when we asked
what other pieces of information is needed to reproduce the stuttering event and to fix a problem, such a participant
responded “Disable game DVR. Disable dynamic ticks and HPET. Disable visual effects. Disable Windows features you
don’t need. Disable full-screen optimizations. [...] Increase virtual memory. Delete unnecessary programs. Update your
RAM. Reset your BIOS to optimized defaults.”

We ended up with 26 valid responses. We summarize the quantitative data through boxplots and barplots, and report
examples of interesting open answers we collected.

2.2 Results

Most of the participants (73%) reported that they have (or had in the past) experience as developers/testers in the
game development industry, while the remaining 27% still had game development experience, but not in industry (e.g.,
open-source projects). Out of the ones with industrial experiences, 26% are/were testers, 42% are/were developers,
and the remaining 32% have/had other roles (e.g., AI specialist). The average experience in game development of the
participants is 2 years, with 19% of them having more than 3 years of experience. Fig. 2 summarizes the data collected
for the subsequent parts of the survey we discuss below.

Identification of Stuttering Events. Most of the participants (76%) reported that they are interested in identifying
stuttering events during the beta-testing of a video game. The average reported percentage of bug reports related to
stuttering is ∼15%, with a median ∼10% (top-left part of Fig. 2). As expected, most of the participants use telemetry
for detecting stuttering events (62%). While they mostly agree that telemetry is useful for detecting stuttering events
(median/mode of 4), not all of them think that it can be useful for reproducing and fixing the issue (median for
reproduction: 3.5; median for fixing: 4). Some participants reported that telemetry does not provide sufficient information
to pinpoint the cause of the issue. For example, one practitioner reported that, sometimes, stuttering events are hardware-
related and, thus, difficult to reproduce without the exact setup of the end user.

Usage of Online Platforms. The majority of participants (77%) use YouTube to collect bug-related information
about games, with several of them also focusing on more communication-oriented platforms such as Discord (58%) and
forums (50%). Some of the participants claim to use YouTube to collect information about game issues since “... following
a video that specifically addresses the problem is often the best approach. On the other hand another participant states
that ”Sometimes I search the forums for common problems in games and then try to find them in the game I am testing.“
In addition, some participants who use more than one platform say that ”If something is public enough, then it should
go back to the developers and testers [...] using social media is a great way to get information about what is causing
any number of problems.“

We observed that the large majority of participants use YouTube, while a few of them use Twitch (∼5%). While no
participant explicitly reported this, it might be the case that they generally prefer the former over the latter because it
contains higher-quality videos (often edited before being posted), while Twitch mostly features live/past-live videos.

Usefulness of an Approach for Identifying Stuttering Events in Gameplay Videos. The bottom part of Fig. 2
summarizes participants’ feelings about the usefulness of an approach for automatically detecting stuttering events in
gameplay videos. Most of them believe such an approach would be more useful to reproduce and fix stuttering-related
issues than telemetry (even if marginally, given that the median, in this case, is 4 for both the questions). The word
cloud in the lower-right part of Fig. 2 reports information developers might need to replicate/fix stuttering-related
issues (besides gameplay videos). Most of them report hardware information (CPU - and GPU -related information).
Finally, 86% of participants would like to use such an approach in combination with existing tools (e.g., telemetry),

5

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

while the remainder said that it could replace them. None of the participants reported a lack of interest in testing such
an approach (with a median of 4 and no answer below 3).

Fig. 2. Survey results.

3 HASTE: HINTER FOR GAME STUTTERING EVENTS

Fig. 3 overviews the steps behind HASTE. The process starts with a list of gameplay videos which developers want to
analyze. These are supposed to be gameplay videos related to video games they maintain. The list of videos is provided
to the Gameplay Videos Crawler, which is in charge of downloading them. Our current implementation supports
the download of gameplay videos from YouTube [47] and Twitch [38]. More often than not, the downloaded videos
include, besides the gameplay itself, also additional content which is not interesting to identify stuttering. For example,
the player (i.e., the person recording the video) might interrupt the gameplay to talk to the viewers. For this reason,
HASTE implements a mechanism to identify, within a given video, the fragments representing actual gameplay. This is
accomplished through two components: (i) the Video Slicer splits the video into different slices, based on drastic changes
in the video frames (e.g., the gameplay is interrupted to show an advertisement, thus causing most of the pixels on
screen to change); (ii) a Video Slice Classifier, which is a machine learning model trained to discriminate between video
slices showing and not showing gameplay. Video slices not classified as gameplay are discarded, while the “gameplay
slices” are further analyzed. Indeed, it is not possible to just compare subsequent frames to check whether they are

6

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

Gameplay
Videos Crawler

YouTube

Data Flow
Dependency

Gameplay videos
of interest

Video
Slicer

Gameplay videos slicesGameplay videos

Twitch

Video Slice
Classifier

Gameplay
slices

Non gameplay
slices

Heatmap
computation

Cropped video frames

Stuttering
Detector

Candidate
stuttering

Fig. 3. HASTE overview.

identical or not to identify stuttering events. This is due to the presence on screen of additional elements such as the
camera recording the player (see e.g., Fig. 1). For example, it is possible that despite a game stuttering and, thus, a
perfect match between the pixels representing the game in two subsequent frames, the latter are different due to the
player moving or to other elements appearing on the screen (e.g., subscription notifications). For this reason, HASTE
features a Heatmap Computation step aimed at identifying, in a given gameplay slice, the pixels of its frames which
change more frequently.

These are supposed to be the pixels in which the game is displayed and allow to crop the frames to only focus on this
part when computing the similarity between subsequent frames. Cropped subsequent frames being almost identical are
identified as candidate stuttering. In the following we detail each of the HASTE’s steps.

3.1 Video Slicer

Given a gameplay video as input, the Video Slicer extracts and stores all its frames. This is done by using the OpenCV
library [23]. To make the following steps of HASTE faster, all frames are resized to a resolution of 320 × 180. Each pair of
subsequent frames is then compared using their color histogram representation. Color histograms allow to summarize
an image as the number of its pixels having a pixel falling in specific color ranges. Using color histograms it is possible to
compare images by checking whether their “distribution of colors” is similar. Histograms are a typical method used for
extracting features from images and one of the most basic methodologies for computing image similarity [32]. Instead
of using the classic RGB (Red, Green, and Blue) color space, we use HSL (Hue, Saturation, and Level). Such a color
space allows to better detect the similarity between frames even when some effects are employed (e.g., fade-in, fade-out,
transitions). For example, if a fade-out effect is used, the hue and the saturation of all the pixels will likely remain the
same, while the level (i.e., the brightness) will uniformly reduce for all of them. A drawback of this representation is
that the similarity computation ignores the shapes and texture of the compared images. However, given the goal of the
Video Slicer (i.e., splitting a video when drastic changes in the video frames are observed), a similarity computation
based on color distributions is sufficient. For example, if a gameplay is interrupted by an advertisement, we expect
substantial changes in the color distribution of the frames.

We compute the similarity between each pair of subsequent frames in the video using the compareHist function
from OpenCV [23], which takes as input the two histograms to compare (i.e., the two images) and the method to
use for the similarity computation. For the latter, we use HISTCMP_CORREL, computing a correlation between the two
histograms and thus returning a value between -1 and 1, with 1 indicating a high similarity between images. Following
well-known guidelines used to interpret correlation coefficients [8], we split the video if two subsequent frames have a
correlation lower than 0.3 (i.e., no positive correlation). Such a process results in a set of video slices extracted from
the input video. We discard slices shorter than 150 frames (5 seconds) since, as it will be clear later, HASTE exploits

7

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965

information extracted from video slices to automatically classify them as gameplay or non-gameplay slices. A slice
shorter than 5 seconds does not contain enough information to allow for a reliable classification.

It is worth highlighting that the Video Slicer is not meant for extracting slices representing parts of the game that
humans would find semantically coherent but rather at detecting visually coherent slices. For example, let us imagine a
cutscene in which two visually different characters discuss in a shot-reverse shot in which they are alternately shown
on screen. We are not interested in having a single semantically coherent slice for the whole dialogue: Having a slice for
each (visually coherent) camera cut is good as well, as long as gameplay and non-gameplay parts (e.g., advertisements)
are not in the same slice since the next step assumes this for detecting and discarding non-gameplay slices.

3.2 Video Slice Classifier

Once extracted the slices from a video under analysis, they are provided as input to a machine learner in charge of
classifying them as gameplay or non-gameplay slices. HASTE exploits the Weka [42] implementation of the Random
Forest algorithm [6] for this task. The Random Forest builds a collection of decision trees with the aim of solving
classification-type problems, where the goal is to predict values of a categorical variable from one or more continuous
and/or categorical predictor variables. In our work, the categorical dependent variable is the type of video slice (i.e.,
gameplay or non-gameplay), and we use features extracted from the video slice as predictor variables. Two families of
features are exploited: heatmap-based and similarity-based. We detail in the following these features, while in our study
design (Section 4) we explain how we trained and evaluated the classifier.

Heatmap-based features. Given the set of frames 𝑆 = {𝐹1, 𝐹2, . . . , 𝐹𝑛} in a given slice, we start by creating a 320 ×
180 𝐻𝑀 matrix in which each entry represents a pixel of the frames in 𝑆 (e.g., the entry in position [1, 1] represents the
pixel in the top-left corner of each frame). At the beginning, all 𝐻𝑀 entries are initialized to 0. Then, we perform a
pixel-by-pixel comparison between each subsequent pair of frames in 𝑆 (e.g., 𝐹1 vs 𝐹2) and, if a pixel in position [𝑖, 𝑗]
has a different color in the two frames, we increase by one the value of 𝐻𝑀 [𝑖, 𝑗]. At the end of this process, 𝐻𝑀 will
represent a heatmap showing how frequently each pixel in the 𝑆 ’s frames changed. Once created 𝐻𝑀 , we compute its
minimum, maximum, median, average, first and third quartile, and use those six statistics as features for the Random
Forest. Our assumption is that the frequency with which the pixels change could help in discriminating gameplay slices
from non-gameplay slices. For example, we assume that non-gameplay slices in which the gamer is talking in full screen
foreground tend to have less pixel-level changes as compared to gameplay slices featuring the video game.

Similarity-based features.We start from the same set of frames 𝑆 in the slice and compute the correlation between
the color histograms of each subsequent pair of frames using HISTCMP_CORREL.

This process results in a distribution of correlations having 𝑛 − 1 values, where 𝑛 is the cardinality of 𝑆 . Indeed,
if 𝑆 = {𝐹1, 𝐹2, 𝐹3}, we compute the following correlations (𝐶𝑟): 𝐶𝑟 (𝐹1, 𝐹2) and 𝐶𝑟 (𝐹2, 𝐹3). For such a distribution we
compute the same six descriptive statistics previously described and provide them as additional features to the Random
Forest. The rationale here is that the color histogram similarity between frames could be different between gameplay

and non-gameplay slices. For example, an advertisement on screen is likely to exploit a more variegate and dynamic set
of colors as compared to a gameplay, which is usually characterized by a quite stable color scheme for a given game
scene.

3.3 Cropping Frames Using the Heatmap

Video slices classified by the Random Forest as gameplay are further analyzed to identify in them the pixels representing
the actual game. Indeed, as previously explained, before looking for stuttering events we must be able to focus the

8

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

Fig. 4. Example of heatmap applied to several frames of the same slice.

attention on the pixels relevant for the game. For a given gameplay video slice, we exploit the previously built heatmap
𝐻𝑀 and compute its 90% percentile. This means identifying the top-10% of pixels which more frequently change in the
slice. It is indeed reasonable to think that the portion (i.e., subset of pixels) showing the actual game on screen is the
one changing more frequently, since it represents the core action of the game. Instead, parts of the screen showing ads,
chat messages, or the streamer, are likely to change less frequently.

All pixels falling below the 90% percentile are removed from all frames in 𝑆 (i.e., the frames of a given video slice). In
Fig. 4 we show an example of how such a process allows to focus the attention only on the part of the frames featuring
the game in action. In this example we use a transparency to still make it visible the part that would be cut from the
frames (i.e., the one in black). Since all frames belong to the same video slice, they are all cropped using the same
heatmap. The output of this step are cropped frames belonging to each gameplay slice (i.e., frames only including the
top-10% of changing pixels within the slice).

3.4 Stuttering Detector

In the last step of HASTE, the cropped frames are provided as input to the Stuttering Detector which is in charge of
comparing them looking for candidate stuttering events. The stuttering identification is based on a simple idea: If
subsequent cropped frames are identical, we can safely assume that a stuttering event is happening, since the cropped
frames, as explained, are supposed to focus on the game action. Given the set of cropped frames in a video slice, we
compute the similarity between each pair of subsequent frames by using the Structural Similarity Index (SSIM) [41].
SSIM has been proposed by Wang et al. as a way to overcome the shortcomings of classic image similarity techniques
(such as the previously described color histogram similarity) and it is based on the idea of comparing the images’
textures. The authors showed that the SSIM is the metric better capturing image similarity as perceived by humans [41],
which is what we need to identify stuttering events (i.e., cases in which humans perceive a high similarity between
subsequent frames, giving the impression of lagging). We used the SSIM implementation available in the scikit image
library [31], which returns a value between 0.0 and 1.0, with the latter identifying identical images.

We opted for a quite conservative detection of stuttering events since our goal is not to flood developers with
recommendations about possible stuttering events, but rather to provide precise recommendations (even at the cost
of losing some valid data points). In particular, the Stuttering Detector reports a candidate stuttering if the SSIM is at
least 1 − 𝜖 for two consecutive pairs of cropped frames. 𝜖 is a small number that developers can choose to increase
or decrease the number of candidate stuttering events returned by HASTE. If 𝜖 is 0, even a small imprecision in the
previous phases (e.g., in cropping) would result in a missed detection of a stuttering event. Therefore, we set 𝜖 = 0.0001,
so that, given the resolution of our frames (320 × 180 = 57,600 pixels), HASTE is able to tolerate a 5-pixel noise. We say
that a stuttering event is there if two consecutive pairs of cropped frames meet the similarity threshold to further deal

9

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

with possible imprecisions of the frames-cropping stage: When we find two subsequent frames meeting our threshold,
we ask for a “confirmation” to the next pair of frames as well.

The number of consecutive pairs that should meet the threshold can be further increased in case developers want to
reduce the chances to obtain false-positive recommendations. Also, cases in which more than 30 subsequent pairs of
frames meet the similarity threshold are not treated as stuttering, since they are more likely to be due to events such as
the player pausing the game. The final output is a set of candidate stuttering events, reporting, for each analyzed video,
the frames at which the issues start (if any).

4 EMPIRICAL STUDY DESIGN

The goal of our study is to evaluate the effectiveness of HASTE in automatically identifying stuttering events in
gameplay videos. In particular, we want to assess HASTE in terms of its: (i) accuracy in automatically splitting gameplay
videos into visually coherent slices; (ii) ability to correctly classify actual gameplay video slices; and (iii) ability to
automatically identify stuttering events in gameplay videos. We aim at answering the following RQs:

RQ1: What is the accuracy of HASTE in automatically splitting gameplay videos into visually coherent slices? RQ1

assesses the accuracy of HASTE in automatically splitting gameplay videos into visually coherent slices (e.g., fragments
showing the same game scene, an advertisement). RQ1 evaluates the Video Slicer (Section 3.1).

RQ2: To what extent is HASTE able to correctly classify video slices relevant to the gameplay? RQ2 evaluates the Video
Slice Classifier (Section 3.2) focusing on its ability to classify the video fragments extracted by the Video Slicer as
gameplay or non-gameplay.

RQ3:To what extent is HASTE able to automatically identify stuttering events in gameplay videos? Our last research
question evaluates HASTE as a whole, verifying whether the stuttering events it identifies are true positives.

4.1 Context Selection

We built three video datasets, each one aimed at answering one of the formulated research questions. All datasets
have been extracted from either Twitch [38] or YouTube [47]. For the former, the Gameplay Videos Crawler relies on
the Twitch command-line interface (CLI) [39] while for the latter it exploits the Pytube library [28]. Both streaming
platforms allow to download videos by specifying characteristics of interest such as their resolution and FPS.

4.1.1 RQ1: Dataset for the evaluation of the Video Slicer. We collected 20 gameplay videos from Twitch starting from
the list of most popular videos, which is based on the popularity of the streamer and on the number of visualizations.
We targeted English videos having a duration between 10 and 40 minutes and being downloadable at 30 FPS at least.
Concerning the length thresholds, these have been defined to focus on videos which are long-enough to justify the
usage of the Video Slicer (e.g., slicing a 30-second video would probably be useless) while considering a maximum length
representative of most videos uploaded on these platforms. Table 1 reports the exact duration of each video. Overall,
this dataset features over seven hours of gameplay videos. All videos have been dowloaded in .mp4 format in 1280 ×
720 pixels resolution at 30 FPS.

4.1.2 RQ2: Dataset for the evaluation of the Video Slice Classifier. To evaluate the Video Slice Classifier we need to
build a dataset to train and evaluate the Random Forest model. This means creating a dataset of video slices labeled
as gameplay or non-gameplay. Manually building such a dataset would be quite expensive. Thus, we designed the
following automated process.

10

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

To collect instances of non-gameplay slices, we downloaded the top-5 videos (in terms of visualizations) from each
of the top-10 YouTube non-game-related video categories (i.e., basketball, cooking, football, Formula 1, motors sport,
movies, music, news, sport, trends). Then, we run on them our Video Slicer and collected a total of 2,945 slices that we
can safely label as non-gameplay. Similarly, as representative of gameplay slices, we downloaded 5 gameplay videos
from each of the six game-related categories in YouTube (i.e., action, adventure, beat, riders, shooter, sport-game).
We made sure that the downloaded videos only contained gameplay scenes, without any sort of interruption due to
advertisements, the gamer speaking, etc. Again, we run the Video Slicer on the 30 gameplay videos, obtaining 1,546
slices labeled as gameplay. This is the dataset on which the Random Forest will be trained and tested.

4.1.3 RQ3: Dataset for the evaluation of HASTE as a whole. The third and last dataset aims at assessing the ability of
HASTE in identifying stuttering events in gameplay videos. We selected 10 videos from the list of popular gameplay
videos on YouTube. These videos have not been used to build the previously described datasets. Given the goal of RQ3,
we selected videos containing in their meta data (i.e., title, description, comments) the word “stuttering”. These videos
should provide data points useful to assess the ability of HASTE in identifying stuttering events. Table 3 reports the
duration of the 10 selected videos, which is ∼2 hours, in total.

4.2 Data Collection and Analysis

To address RQ1 we ran the Video Slicer on the set of 20 Twitch gameplay videos, collecting a total of 1,909 extracted
slices. Out of these, we manually analyzed a sample of 320 video slices, ensuring a margin of error of ±5% with a
confidence level of 95%.

The estimation has been performed applying a sample size calculation formula for an unknown population [29]. The
goal of the manual validation was to assure that the splitting performed by HASTE actually resulted in the creation
of visually coherent slices, representing e.g., a specific game scene, an introductory countdown, etc. Each of the 320
manually analyzed slices has been independently inspected by two of the authors who classified them as “visually
coherent” or not. Conflicts, arisen for 13 slices (4%), have been solved through an open discussion. We report the
precision of the Video Slicer as the percentage of reported slices which have been classified as visually coherent. Such
an evaluation lacks an assessment of the recall ensured by the Video Slicer. In other words, we are not assessing whether
points in the video which should have resulted in new slices have been missed by HASTE. To partially address this
limitation, when manually inspecting the 320 slices we also verified whether each of them contained additional “valid
splitting points” that have been missed by HASTE. We also report this data when answering RQ1.

To answer RQ2, we trained and tested the Random Forest classifier on the dataset of 1,546 gameplay and 2,945
non-gameplay video slices previously described. We used the WEKA’s default configuration for the Random Forest
classifier, i.e., we set the number of trees to 100, the number of randomly chosen attributes to 0 and the maximum
depth of the trees to “unlimited”. We used a 10-fold cross validation to assess the performance of the trained model.
Since our dataset is slightly unbalanced (66% of the slices are non-gameplay), we also experimented with re-balancing
our training set in each of the 10-fold iterations using SMOTE [7], an oversampling method which creates synthetic
samples from the minor class. Since we did not observe major improvements (results in our replication package [2]), we
discuss in the paper the results without re-balancing. In particular, we report the confusion matrix output of the 10-fold
validation (and, thus, the true positives, true negatives, false positives, and false negatives) and the corresponding recall
and precision values for both the gameplay and the non-gameplay categories. We compare our approach with a very
simple baseline that reports all the video segments as gameplay videos.

11

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

To address RQ3 we started by manually building an oracle reporting stuttering events in the 10 YouTube videos
composing the dataset for this RQ. The first author looked at the overall 2 hours of videos with the goal if identifying
stuttering events. The latter were documented by writing down the second in the video and the corresponding frame at
which the event started. The 44 candidate stuttering events identified have been further validated by a second author,
who confirmed 41 of them (7% of conflicts). An open discussion aimed at solving conflicts led to the final creation of
our oracle, composed by 42 stuttering events spread across the 10 videos as reported in Table 3. HASTE has then been
run on the 10 videos, collecting the 62 candidate stuttering events reported by it. Based on these, we compute its recall
and precision when considering the built oracle as the ground truth.

We also manually analyzed the reported stuttering events that were outside of the oracle (i.e., that we did not
identified by watching the video). Indeed, the perception of a stuttering event is quite subjective and subtle in some
cases (micro-stuttering). Thus, even instances not present in our oracle might be true positives. Also this analysis has
been performed independently by two authors, with conflicts arisen on 1 (1.61%) of the inspected instances. Such an
analysis allows to compute an overall precision for HASTE (i.e., how many of the stuttering events it reports are true
positives).

To better interpret the performance of HASTE, we compare it with two main baselines. The first, named SSIM

baseline, is basically the last step of HASTE (i.e., the Stuttering Detector) without all previous components in the pipeline.
This means that a stuttering event is identified if at least two pairs of subsequent frames have a SSIM ≥ 1 − 𝜖 (i.e.,
0.9999, in our case). Differently from the complete approach, the SSIM is computed (i) between all pairs of subsequent
frames in the video since the non-gameplay slices are not discarded by the Random Forest, and (ii) on the entire frame,
including external elements shown on screen but unrelated to the gameplay (e.g., the player), since cropping is not
applied. The SSIM baseline allows to assess the boost in performance provided to HASTE by all steps preceding the
similarity computation. The second baseline, Pixel-sim baseline, is the most simple and natural approach one could
devise to detect stuttering events. It computes a pixel-by-pixel similarity between subsequent frames in a video, and
it says that there is a stuttering event when an exact match between them is found. In addition to those two main
baselines, we also compare HASTE with a version of HASTE (HASTE NoFiltering) that does not rely on the Video Slice
Classifier component, i.e., which does not filter out non-gameplay. This would further allow to highlight the usefulness
of such a step.

We run the baselines on the same dataset of videos used for HASTE computing, also in this case, the precision
and recall with respect to the manually built oracle. The Pixel-sim baseline and HASTE NoFiltering reported a total of 95
and 213 candidate stuttering events, respectively. We manually classified all instances not matching the ones in the
oracle using the same procedure previously described for HASTE and computed the baseline precision. Since the SSIM
baseline reported a much higher number of stuttering events (388), we performed the same analysis, but on a statistically
significant sample (95%±5% confidence) of those not matching our oracle (186 manually analyzed instances).

5 RESULTS DISCUSSION

We discuss the achieved results by research question.

5.1 RQ1: Evaluation of Video Slicer.

Table 1 reports the accuracy of the Video Slicer component in identifying valid splitting points in the provided videos.
For each video, we report: (i) its ID, which can be mapped to our replication package [2]; (ii) its length; (iii) the number
of slices (i.e., frames in which the video should be split) identified by HASTE; (iv) the size of the sample we manually

12

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580

Table 1. RQ1: Accuracy of the Video Slicer

Video Length #Identified #Analyzed TP Precision #Missed

1 30:46 563 94 58 0.62 8
2 13:41 63 11 7 0.64 2
3 20:28 78 13 10 0.77 1
4 16:15 53 9 9 1.00 1
5 29:17 143 24 19 0.79 4
6 15:42 61 10 7 0.70 3
7 23:53 97 16 16 1.00 2
8 19:33 180 30 20 0.66 2
9 20:39 35 6 6 1.00 0
10 35:17 28 5 4 0.80 2
11 19:45 52 9 9 1.00 1
12 29:11 108 18 13 0.72 3
13 17:56 5 1 1 1.00 0
14 24:13 83 14 12 0.86 0
15 13:10 7 1 1 1.00 3
16 18:42 25 4 4 1.00 1
17 22:36 38 6 6 1.00 0
18 23:48 22 4 3 0.75 1
19 28:49 254 43 37 0.86 4
20 17:27 14 2 2 1.00 0

Overall 7:21:08 1,909 320 244 0.76 38

analyzed; (v) the true positive (TP) instances we identified in the analyzed sample (i.e., points in which the splitting was
valid); (vi) the corresponding precision, computed as the number of TPs divided by the size of the analyzed sample;
and (vii) the number of missed slices (i.e., additional splitting points we identified that were missed by HASTE). Worth
commenting is the number of slices identified by HASTE (1,909), an average of 95 per video. Such a number may
look surprisingly high. However, it is worth remembering that the goal of the Video Slicer is not to extract slices that
are meant to be visualized by humans, but to make sure that each slice embeds a set of frames having a very similar
graphical layout.

Indeed, this is crucial for the subsequent steps of HASTE. For example, computing the 𝐻𝑀 heatmap on a set of
frames visualizing completely different content would not make sense, since it would mean focusing on the top-10% of
changing pixels which, however, may represent different objects (e.g., in a frame, the game action, in another frame, an
advertisement). Thus, the slicing must cluster together similar subsequent frames into one slice, creating a new slice
when the pixels on screen substantially change. Based on our analysis, 76% of the identified splitting points are correct,
representing major changes of the content depicted on screen. One may argue what false positives are in this context.
In other words, how is it possible that an approach based on image similarity may identify wrong split points (i.e.,
subsequent frames that basically represent the same scene but that are perceived as different by HASTE and thus split).
This happens, for example, when a special effect is shown on screen for a few seconds (e.g., some smoke appears in the
game for a few frames), leading the color histogram similarity to low values between the last frame without the special
effect and the first frame showing it. While HASTE slices the video at this point, this is a wrong decision, since both
the frames before and after the special effect represent the exact same scene and, thus, could in theory share the same
heatmap.

13

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

Fig. 5. Example of gradient effect resulting in the loss of a valid splitting point

Concerning the “#Missed Slices” column, in the 320 slices we manually inspected, we found 38 valid splitting points
missed by HASTE. These are mostly due to the application of a gradient effect when the video moves from one scene
(e.g., the player introducing the following video content) to another (e.g., the actual gameplay). The gradient effect
applied over a set of frames {𝐹1, 𝐹2, . . . , 𝐹𝑛} makes HASTE failing since there is no drastic change from a frame 𝐹𝑖 to a
frame 𝐹𝑖+1, with the image on screen slowly changing. However, such a process results in an overall drastic change
between 𝐹1 and 𝐹𝑛 , which is missed by HASTE. Fig. 5 shows a concrete example of the gradient effect resulting in the
loss of a valid splitting point.

The issue of missed slices, while minimal in our current dataset, poses a potential challenge for datasets with a
prevalent use of gradient transitions between scenes. his effect results in a gradual change that HASTE currently fails
to detect due to its reliance on identifying significant frame-to-frame changes. A possible basic solution is to extend the
comparison between frames, in addition to the immediately following frames, to a larger time window, which could
help identify the cumulative effect of gradual changes. By analyzing the difference between frames in a specific interval,
HASTE could detect significant transitions occurring after a series of smaller changes. Alternatively, a more expensive
method might include using machine learning techniques on a dataset that includes a significant number of gradient
transitions. A model could allow the recognition of gradual change patterns typical of gradient effects, enabling the
identification of cutoff points that would otherwise go undetected. In general, however, this remains as an open issue
that future work should address.

5.2 RQ2: Evaluation of Video Slice Classifier.

Table 2 reports the confusion matrix resulting from the classification performed by the Video Slice Classifier.
The rows report the gameplay (GP) and the non-gameplay (NGP) slices in the oracle, which have been classified by

HASTE as reported in the columns. For example, out of the 1,537 GP slices in the oracle (1,174 + 363), 1,174 have been
correctly identified by HASTE, while 363 have been misclassified as NGP. This results in a recall of 0.77 for the GP
slices. The precision for GP slices is 0.80, since HASTE wrongly classifies 296 NGP slices as GP. Thus, eight out of ten
slices identified as GP by HASTE are actual gameplay slices.

The precision and recall values are even better for the identification of NGP slices. While the latter are not at the
core of HASTE, the excellent results achieved demonstrate that the features used for training the Video Slice Classifier
are able to filter out slices that are irrelevant for the identification of stuttering events.

The Random Forest does also pair each prediction with a “confidence level”, a value between 0.50 and 1.00 that
indicates how confident the model is in the provided classification. Such a confidence level is computed as the number
of classification trees in the forest that “voted” for a specific output (e.g., gameplay). For example, an output prediction
⟨gameplay, 0.90⟩ indicates that the model is 90% confident about the gameplay classification. We studied how the
confidence of the classifications impacts their quality. In particular, we verified whether by setting a threshold on the
confidence of the classification it is possible to effectively exclude false positives (i.e., NGP classified as GP). Such a

14

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826

Table 2. RQ2: Automatic classification of video slices as gameplay (GP) and non-gameplay (NGP) by Video Slice Classifier and the
baseline.

Video Slice Classifier GP NGP Precision Recall

GP 1,174 363 0.80 0.77
NGP 296 2,657 0.90 0.88

Baseline GP NGP Precision Recall

GP 1,573 0 0.35 1.00
NGP 2,953 0 0.00 0.00

scenario could be interesting for developers who want to receive less “stuttering reports” from HASTE which, however,
are more likely to belong to actual gameplay slices. We found that by only considering classifications having a confidence
of at least 0.70 (other slices are just discarded as if they are NGP), the precision in the identification of GP slices raises
to 0.89 and it further increases to 0.98 by only considering classifications having a confidence of at least 0.90. This has a
price to pay in terms of recall which drops to 0.56 (for the 0.70 confidence) and 0.27 (0.90). Still, our analysis shows that
using a high threshold on the classification confidence can be a viable solution for developers interested in receiving
less, but more likely to be correct, recommendations.

The baseline naturally achieves a perfect recall of 1, which is higher than the one achieved by Video Slice Classifier
(0.77) on gameplay segments. However, it achieves a very low precision on such a class (0.35). The practical implication
of such low precision is an unacceptably high rate of false positives, which could undermine the usefulness of the
classifier in real-world applications.

5.3 RQ3: HASTE for Identifying Stuttering Events.

Table 3 compares HASTE and the two baselines in terms of recall and precision achieved with respect to the oracle, i.e.,
the set of 42 stuttering events we manually identified in the inspected ∼2 hours of videos. For each approach and video,
we provide the number of stuttering events identified (#Found), the number of true positives (i.e., correctly identified
events) and the corresponding recall and precision.

HASTE is able to correctly identify 30 stuttering events (0.71 recall), and nearly half of the reported stuttering events
are true positives accordingly to our oracle (0.48 precision). Therefore, even by considering all candidate stuttering
events not matching our oracle as “wrong”, HASTE works reasonably well, with one out of two reported stuttering
being correct. HASTE was not able to identify 12 stuttering events documented in our oracle. This happened mostly
due to imprecisions for the Random Forest classifier that wrongly labels some slices as non-gameplay, thus excluding
them from the stuttering analysis. For example, for the video with ID=3 we miss three out of the three stuttering events,
since they fall within slices classified as non-gameplay. An example of such a scenario is available in the video hosted at
https://youtu.be/ok9TV-lZyJk?t=56, with the slice starting at second 57 wrongly classified as non-gameplay by HASTE,
with the consequent miss of the stuttering documented in our oracle (second 63).

In relative terms, it can be noticed that HASTE performs significantly better than both baselines. The Pixel-sim
baseline, which simply checks whether consecutive frames are equal at pixel level, achieves the worst results in terms
of recall (0.29) accompanied by a low precision as well (13%). This shows that a trivial approach is largely insufficient
for the problem at hand. Several of the wrongly identified stuttering events belong to parts of the videos unrelated
to gameplay, such as those showing on screen the game settings which, by their nature, are quite static and tend to

15

https://youtu.be/ok9TV-lZyJk?t=56

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

Table 3. RQ3: Recall and precision in the identification of stuttering events we manually identified (oracle).

HASTE SSIM baseline Pixel-sim baseline

Video Length #Oracle #Found TP Recall Prec. #Found TP Recall Prec. #Found TP Recall Prec.

1 15:15 1 3 1 1.00 0.33 29 1 1.00 0.03 1 1 1.00 1.00
2 8:49 4 8 1 0.25 0.13 29 3 0.75 0.10 7 2 0.50 0.29
3 7:27 1 4 1 1.00 0.25 19 1 1.00 0.05 14 1 1.00 0.07
4 17:21 10 11 7 0.70 0.64 194 5 0.50 0.03 57 3 0.30 0.05
5 11:59 1 2 0 0.00 0.00 1 0 0.00 0.00 1 0 0.00 0.00
6 12:04 1 3 1 1.00 0.33 10 0 0.00 0.00 5 0 0.00 0.00
7 6:14 22 29 18 0.81 0.62 74 17 0.77 0.23 10 5 0.23 0.50
8 21:16 0 0 0 - - 25 0 - 0.00 0 0 - -
9 5:10 2 1 1 0.50 1.00 0 0 0.00 - 0 0 0.00 -
10 14:37 0 1 0 - 0.00 7 0 - 0.00 0 0 - -

2:00:12 42 62 30 0.71 0.48 388 27 0.64 0.07 95 12 0.29 0.13

feature equal pairs of subsequent frames. Also the SSIM baseline tends to recommend false positive stuttering events
in these cases, since it does not benefit from the exclusion of non-gameplay slices performed by the Random Forest.
The SSIM baseline has the worst precision (0.07), due to the additional tolerance it has compared to the other baseline.
Indeed, while the Pixel-sim baseline identifies a stuttering only if two subsequent frames are identical, the SSIM baseline

inherits the design decision of our approach, with the 0.9999 threshold.
Concerning the recall value (0.64), it may look surprising that SSIM baseline achieves a lower recall than HASTE.

Indeed, the additional steps behind our approach (in particular the Video Slicer and the Video Slice Classifier) are mostly
aimed at removing false positives, i.e., stuttering events detected when there is no gameplay on screen. The lower
recall is completely due to the mask employed in HASTE for cropping the 10% most frequently changing pixels in the
slice. The top part of Fig. 6 shows how HASTE “sees” two subsequent frames before computing their SSIM, which is
instead computed on the entire frames (shown in the bottom of Fig. 6) by the SSIM baseline. The cropped frames allow
HASTE to exclude the face of the player from the similarity computation, thus correctly identifying the stuttering, since
the core part of the game scene is identical between the two images. Instead, the baseline considers the changes in
“irrelevant” parts of the screen which make it missing the stuttering since the similarity falls below the set threshold.

It is worth noting that on the video with ID=2 both baselines achieved a higher recall as compared to HASTE. This is
due to the lack in this video of external elements on screen (e.g., the player), which makes all strategies adopted in
HASTE to exclude false positives useless, and just leading to the lost of valid stuttering events.

We further analyzed the stuttering events identified by the experimented approaches but not matching our oracle
(i.e., correct stuttering we missed while creating the oracle). This could happen especially in the case of micro-stuttering
events which are hard to spot for humans, but that might still be relevant for developers [43]. We show the results of
such an analysis in Table 4, in which we report, for each approach, (i) the number of events analyzed, (ii) the number of
true positives found that do not belong to the oracle (TP¬𝑂), and (iii) the computed precision. Remember that for the
SSIM baseline we analyzed a statistically significant sample (186 instances) of the 388 reported events, while we analyzed
all the events for HASTE and the Pixel-sim baseline. HASTE confirms its superiority, by achieving a 0.78 precision
compared to the 0.19 of the best-performing baseline. Overall, when considering both the true positives falling and
not falling within our oracle, 89% of the stuttering events detected by HASTE are actual stuttering or micro-stuttering
events. Only 7 out of 62 identified events are false positives.

Table 5 reports the results of the comparison between HASTE and HASTE NoFiltering . HASTE NoFiltering is able to
correctly identify a larger number of valid stuttering events as compared to HASTE (0.73 recall), but it is less precise

16

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072

Fig. 6. Comparison between HASTE and SSIM baseline: On top how HASTE “sees” two subsequent frames before computing their
SSIM; on the bottom the complete frame how seen by the baseline for the similarity computation

Table 4. RQ3: Precision in identifying micro-stuttering events not in the oracle. † means we analyzed a sample of events.

HASTE SSIM baseline Pixel-sim baseline

Video #Analyzed TP¬𝑂 Precision #Analyzed† TP¬𝑂 Precision #Analyzed† TP¬𝑂 Precision

1 2 1 0.50 14 0 0.00 0 0 -
2 7 6 0.85 13 4 0.31 5 3 0.60
3 3 2 0.67 9 1 0.11 13 4 0.31
4 4 3 0.75 98 10 0.10 54 4 0.09
5 2 1 0.50 1 0 0.00 1 0 0.00
6 2 1 0.50 5 2 0.40 5 1 0.25
7 11 10 0.91 30 19 0.63 5 1 0.25
8 0 0 - 13 0 0.00 0 0 -
9 0 0 - 0 0 0.00 0 0 -
10 1 1 1.00 3 0 0.00 0 0 -

32 25 0.78 186 36 0.19 ± 0.05 83 13 0.16

(0.15 precision). The higher recall can be explained with wrong classifications of segments as non-gameplay, which did
not allow HASTE to detect stuttering events in them. The lower precision, instead, shows that the actual non-gameplay
videos that HASTE NoFiltering contain consecutive identical frames that the last step of HASTE detects as stuttering
events. In summary, we can conclude that the Video Slice Classifier is fundamental to significantly reduce the number
of false positives.

We further analyzed the stuttering events identified by the experimented approaches but not matching our oracle
(i.e.,, correct stuttering we missed while creating the oracle). We show the results of such an analysis in Table 6, in
which we report, for each approach, (i) the number of events analyzed, (ii) the number of true positives that do not
belong to the oracle (TP¬𝑂), and (iii) the computed precision. Such an analysis confirms the superiority of HASTE,
which achieves 0.78 precision, compared to 0.15 obtained by HASTE NoFiltering .

17

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195

Table 5. Comparison between HASTE and HASTE NoFiltering in terms of recall and precision in the identification of stuttering events
we manually identified (oracle).

HASTE NoFiltering HASTE

Video Length #Oracle #Found TP Recall Prec. #Found TP Recall Prec.
1 15:15 1 7 1 1.00 0.14 3 1 1.00 0.33
2 8:49 4 19 2 0.50 0.11 8 1 0.25 0.13
3 7:27 1 7 1 1.00 0.14 4 1 1.00 0.25
4 17:21 10 135 7 0.70 0.05 11 7 0.70 0.64
5 11:59 1 2 0 - - 2 0 0.00 0.00
6 12:04 1 5 1 1.00 0.2 3 1 1.00 0.33
7 6:14 22 32 18 0.81 0.56 29 18 0.81 0.62
8 21:16 0 4 0 - - 0 0 - -
9 5:10 2 1 1 0.50 1.00 1 1 0.50 1.00
10 14:37 0 5 0 - - 1 0 - 0.00

2:00:12 42 213 31 0.73 0.15 62 30 0.71 0.48

Table 6. Comparison between HASTE and HASTE NoFiltering in terms of precision in identifying micro-stuttering events not in the
oracle.s

HASTE NoFiltering HASTE

Video #Analyzed TP¬𝑂 Precision #Analyzed TP¬𝑂 Precision

1 6 1 0.17 2 1 0.50
2 17 8 0.47 7 6 0.85
3 6 2 0.33 3 2 0.67
4 128 4 0.03 4 3 0.75
5 2 1 0.50 2 1 0.50
6 4 1 0.25 2 1 0.50
7 14 10 0.71 11 10 0.91
8 4 0 - 0 0 -
9 0 0 - 0 0 -
10 5 1 0.20 1 1 1.00

182 28 0.15 32 25 0.78

5.4 Generalizability of HASTE

To assess the generalizability of HASTE beyond the dataset we used for evaluating it, we run it on a generic gameplay
video in which we manually validated the presence of stuttering events even if was not declared in the video metadata. In
detail, we started by manually building an oracle reporting stuttering events on a gameplay video. To select the gameplay
video, we used Reddit to look for a video game and a specific area notoriously affected by stuttering. Specifically, we
selected a video regarding a driving session from the video game Grand Theft Auto V. Such a video was a normal
gameplay video for which no stuttering information was reported in the metadata (e.g., title or description). The first
author looked at the 18 minutes of the video with the goal of manually identifying stuttering events. As described in
the evaluation of RQ3 stuttering events were documented by noting the second in the video and the corresponding
frame at which the event began. We identified 7 stuttering events. We then ran HASTE on such a video. It reported 8

18

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318

candidate stuttering events. Based on these, we compute its recall and precision when considering the built oracle as
the ground truth. We obtanied 0.86 recall and 0.75 precision. We manually analyzed the reported stuttering events that
were outside of the oracle.

5.5 Discussion

In this section, we provide practitioners with suggestion on how they could use HASTE in practice.
Using Gameplay Videos from Twitch or YouTube. An interesting point to discuss regards the distinctions

between acquiring gameplay videos from the two dominant platforms used for hosting gameplay videos, i.e., YouTube
and Twitch. Twitch has become a leader in the live streaming sector, primarily because it was the pioneer in executing
the streaming model effectively. This early and successful focus on live streaming helped Twitch carve out a dominant
position in this particular niche. On the other hand, YouTube has always been at the forefront of video hosting services,
offering a platform where users can upload, share, and watch generic video-on-demand (VOD) content. In our study,
we used YouTube videos as the main resource to evaluate our third research question (RQ3) related to the identification
of stuttering events. This choice is based on YouTube’s extensive collection of curated shorter videos (between 5 and
20 minutes) showing stuttering events within games. These videos provide a focused lens to analyze and validate
stuttering events identified by HASTE. On the other hand, we use videos available on Twitch to evaluate our first
research question (RQ1) related to the evaluation of video slices, where we have the ability to analyze longer videos to
identify more potential scene changes within the video that may not occur in shorter videos. The extended duration of
streams on Twitch provides a larger dataset for initial analysis and refinement of our approach, ensuring that HASTE
can efficiently handle extended gameplay videos. On Twitch, during live streaming, streamers often pause gameplay to
offer commentary or advertising content. This variation of content within a single stream increases the complexity of
our analysis, allowing us to evaluate different elements within long-form video content. For this reason, we considered
both platforms in our evaluation. It is worth noting that HASTE is not limited to one of them and it can be used on
generic videos (from both platforms, or even others). The identification of stuttering events does not depend on the
video source on which the analysis is conducted, neither from a technological point-of-view (e.g., reliance on specific
APIs) nor from a methodological perspective (since the only information needed is the source video).

Replicating Problems and Debugging. HASTE is mainly intended to provide developers with video bug reports
from online platforms. This means that it has two key limitations. First, HASTE does not provide developers with
indications on how to replicate the problem observed in the videos. Replicating a bug could be particularly difficult
in video games since, in some cases, the input sequence that manifested the failure need to be provided with perfect
timing for a successful replication. Besides, even when timing is perfect, the inherent non-deterministic nature of some
video games might make it difficult to replicate some problems. There have been some attempts to tackle this problem
in the literature [13], but the research in this area is still in its infancy and future work should specifically aim at solving
this problem. A second limitation of HASTE is that it does not provide developers with feedback on how to debug
and fix those issues. Achieving this goal, however, is beyond the scope of HASTE, which is meant to simply highlight
problems, similarly to the several tools daily used by software developers such as linters or test cases.

Graphics Settings: Impact on Stuttering events in Video Games. The presence of stuttering events might be
more prevalent when the player chooses settings that provide a better graphic experience since the hardware is more
stressed in such a scenario. Nevertheless, stuttering events are never something expected from the players, above all
during gameplay. Since the hardware resources are sometimes insufficient to provide the best graphic experience with
the highest frame rate available, some video games allow the player to choose between high graphic quality with limited

19

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441

Table 7. Interview participants details.

Full Name Position Company Game Development Experience

Lorenzo Valente Lead Developer Tiny Bull Studios, Italy 7+ years
Jonathan Simeone Full Stack Developer Datasound, Italy 7+ years

FPS (e.g., 30) or lower graphic quality with higher FPS (e.g., 60 or 120). Still, such a trade-off should never result in the
manifestation of stuttering events (indeed, it is provided to avoid them). Stuttering events are clearly more problematic
when detected with the game’s default graphics settings, which might impact the highest number of players.

Effectively Using HASTE. Through the analysis of gameplay videos HASTE lacks access to hardware information,
making it challenging to definitively attribute the identified issues to software, hardware, or configuration-related
limitations (e.g., high quality settings on older hardware). Therefore, as any other tool, HASTE might provide false
positives. To address this problems, we suggest practitioners to prioritize stuttering events based on the frequency
they are reported by HASTE. If the same stuttering event is reported in several videos, it is likely that it is not just an
hardware-related or configuration-related problem, but rather a game-related one. On the other hand, isolated stuttering
events might indicate false positives (e.g., related to the hardware or the configuration used). Besides, practitioners
could use HASTE in combination with other testing tools, as also suggested by the developers we interviewed.

6 INDUSTRIAL APPLICABILITY OF HASTE

We evaluated the level of interest of game developers in HASTE by conducting semi-structured interviews. In this
section, we report the design and the results of such a study. Note that, differently from the survey we preliminarily
conducted to verify the relevance of the problem and of our methodology, in this case we aim at receiving feedback on
the specific approach we defined (HASTE).

6.1 Interviews Design

The goal of this additional analysis is to assess the practical applicability of HASTE in an industrial context. Specifically,
we want to assess whether game developers would consider exploiting HASTE in their testing activities to identify
stuttering events in video games. We conducted semi-structured interviews and involved two game developer (see
Table 7) to understand whether they perceive HASTE as a valuable asset that aligns with their needs and objectives in
identifying and addressing stuttering events within their game development process. We selected the two participants
using convenience sampling (both of them are former students at the University of Molise).

Before each interview, one of the authors explained the objective of the study and described how HASTE works. We
showed that the process starts by conducting a search on YouTube for a particular game of interest. In the second step,
HASTE can be executed on the given gameplay video to identify stuttering events in it. As a result, HASTE gives as
output a set of times in the video in which potential stuttering events occur.

Both interviews lasted about 30 minutes and were conducted by one of the authors, who recorded and transcribed
them for the following analyses. The interviews were based on a reflective strategy. In this waywe encourage participants
to share their experiences, thoughts and insights in a more introspective way. For example, by asking open-ended and
exploratory questions, we encourage participants to reflect on their experiences and provide detailed and nuanced
answers.

20

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564

Table 8. Interview questions.

Question Type of response

Stuttering Evaluation (repeated for three stuttering events)
Does the identified stuttering event actually result from a problem within the game? Yes/No
Please motivate your answers Open response
Does the provided information about the stuttering event offer enough details to replicate the issue? Yes/No
Please motivate your answers Open response

Overall Evaluation
Would you use this tool before the release of the game? Yes/No
Please motivate your answers Open response
Would you use this tool after the release of the game? Yes/No
Please motivate your answers Open response
Would you use HASTE in combination with other tools? Yes/No
How useful is HASTE overall for identifying potential stuttering events? 5-point Likert scale
Please motivate your answers Open response
Do you have suggestions on how HASTE could be improved? Open response

We preliminarily executed HASTE on one of the gameplay videos we used for our main evaluation of HASTE
randomly sampled from the ones we used and identified 3 stuttering events. In detail we use the gameplay video related
to the video game Fortnite. We asked the participants open the video on YouTube and we told them the time at which
HASTE detected each stuttering event (one at a time). We gave them the freedom to navigate the video directly on
YouTube to possibly get context regarding the event. After they analyzed each of them, we asked for feedback aimed at
understanding whether (i) the identified stuttering event is really an issue with the game and (ii) the information about
the stuttering event is sufficient to reproduce the problem (see the top part of Table 8).

After the evaluation of the three events, we asked questions aimed at getting feedback on the whole HASTE (see
the bottom part of Table 8). Specifically, we asked whether they would use this tool to identify stuttering events: (i) in
the testing phase before the game release, (ii) in the testing phase after the game release, and (iii) in combination with
other tools. Based on the last questions, participants were asked to indicate on a Likert scale from 1 to 5 (the higher the
better): the usefulness of HASTE in identifying potential stuttering events. Finally, they were asked to provide possible
suggestions on how HASTE could be improved. For all questions, participants were asked to motivate their answers.

6.2 Results

Identifying Stuttering Events. Both Lorenzo and Jonathan confirmed that the parts of the video we made them
watch (reported by HASTE) contained stuttering events. As for the first question, Lorenzo stated that while the one
observed is a stuttering event, it is difficult to determine from the video whether it is a problem due to the game or to
the hardware. On the other hand, Jonathan claimed that the observed events are due to a possible rendering problem of
the game. Specifically, he points out that, in one of them, stuttering occurs when the player turns the view and a larger
game scene with more details is displayed. Similarly, in another case, the player is entering inside a narrower passage:
Jonathan states it is very likely that the stuttering event is due to the game since often such parts are used to unload
game elements of the previous scene and load the ones that need to be rendered later, thus causing performance issues.
In detail he states, “Regardless of the video card or the hardware, even if it has high power, if the scene is heavy, there is

still a drop in fps although not quite as noticeable as it is on a less powerful video card. However, it remains an obvious

optimization problem”. In addition, he points out that “In some games where the graphics are particularly impressive, there

are also scenes that, despite all possible optimization, remain heavy as they are rich in detail. Optimizing those scenes would

mean having less details and thus risk losing player engagement”.
21

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687

Reproduction of Stuttering Events. Both Lorenzo and Jonathan reported that HASTE does not provide sufficient
information about the identified stuttering events to reproduce the conditions that caused of the issue. Again, Jonathan
states “Based on the observed stuttering events, probably due to a rendering problem, we have some information inherent

to what caused the stuttering and thus might allow us to reproduce the conditions that caused the problem. [...] However,

there are other aspects not known through the gameplay video that could affect the event”. For example, both point out
that some of the reported problems may be hardware-related. The devices on which the video game runs, or more
specifically, the video card used, may have a not negligible impact on the presence of possible stuttering events.

Practical Application of HASTE. In relation to the possibility of using this tool before the release of the game,
Lorenzo stated that, during beta-testing, he would rather rely on testers: “I would rely on their experience without

going through gameplay videos, gather information through game logs or direct screen recordings”. On the other hand,
Jonathan evinces in HASTE a support in beta-testing: “Maybe the tester can miss some stuttering event because they are

thinking about so many other things, and maybe they do not notice the micro lag. So it could be a useful tool to increase

the support testing”. In relation to the use of HASTE after the release of the game, both Lorenzo and Jonathan were
positive. In particular, they recognized the potential of the enormous amount of information now available through the
continuously evolving streaming platforms. Lorenzo states: “This tool could be used at scale, on a much larger pool of

streamers. By analyzing their gameplays, a game developer can get a lot of information. However, the actual causes of the

problem remain to be considered”. Again, Jonathan shows strong confidence: “Absolutely yes, the game continues to be

tested by end buyers and I continue to monitor it. This would allow me to find any problems that passed unnoticed in beta

testing”. Both participants would use HASTE in combination with other tools. In details, Lorenzo states: “Yes, I would use
it in combination with the tool provided in the engine we use in development. Specifically, I would use the engine tool first

and HASTE in the second phase”. Jonathan points out: “I would use it with any other tool that automatically allows me to

identify issues missed in testing. The strength comes based on the fact that gameplay videos are always on the rise because

the streamer’s profession is now emerging as a real profession. So this tool can be very useful for constant monitoring”.
Usefulness of HASTE tool. In terms of usefulness of HASTE in the identification of stuttering events, Lorenzo

gives a rating of 3 out of 5. He states “I am uncertain still about the same considerations expressed above about possible

problems due to hardware that could affect stuttering events. [...] However, it might be useful to get this information from

streamers”. In relation to the possibility of improvement HASTE, he suggests taking information from the logs generated
by games during gameplay: “If HASTE highlights video-side stuttering events and at the same time another tool notices an

abnormal sequence of error logs within the log file then there would be more certainty about what caused the stuttering

event”. In relation to the same aspect, Jonathan gives a rating of 5 out of 5: “The proposed events are actually stuttering

events. Regardless of what caused them, the tool identified them. Still, more in-depth analysis of these events may be needed”.
He also suggests that to improve HASTE it would be interesting to allow developers to give feedback on identified
stuttering events in order to recognize false positives. Therefore, a continuous learning model could be useful to improve
HASTE through feedback from those who use it.

Summing up. The two participants mostly provided positive feedback on HASTE, but emphasized its limitations.
One of them was worried about false positives, while the other one was more enthusiastic about the approach. While we
acknowledge that HASTE can provide (even several) false positives, we argue that this is not necessarily an impediment
for all developers. The same problem affects most static code analysis tools and still some developers want to used them
because they have other advantages (e.g., quick feedback). As the interviews point out, also HASTE has a clear advantage:
It is capable of exploiting the very large amount of information available online and reduce the effort of developers
interested in analyzing gameplay videos to find and fix performance issues. In addition, the interviews highlight a key

22

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810

point: The usefulness of HASTE strongly depends on its integration into the workflow of game developers. Despite
our very limited sample of developers involved, the interviewees reported that they would use HASTE at different
stages. Finally, the participants suggested to (i) implement a continuous learning system based on developer feedback to
improve the results and (ii) integrate it with information available from game logs, which however are harder to acquire
than gameplay videos and could be more easily available during beta-testing. Finally, the participants highlighted that
it may be difficult in some cases to understand whether an observed lag is due to a software (game) issue or to an
hardware one. While we agree, game developers may consider an identified stuttering event as relevant only if found in
several videos possibly from different streamers, thus increasing the chance that the observed issue is independent
from the hardware and is, thus, software-related.

7 THREATS TO VALIDITY

Construct validity. Those are mainly related to imprecisions made when building the oracles used in our evaluation
and, more in general, when manually inspecting the output of HASTE and of the baselines. The manual analyses always
involved at least two authors. As for the dataset used to assess the performance of the Video Slice Classifier, it has been
automatically built starting, however, from manually-classified videos assigned in YouTube to specific categories. Thus,
we are confident about the quality of the assigned gameplay/non-gameplay slices.

It is possible that the stuttering events identified in gameplay videos are not due to issues with the game itself but to
external factors, such as a heavy computation running on the player’s machine or suboptimal hardware configuration.
However, gameplay videos are usually recorded by professional players equipped with proper hardware and interested
in recording an enjoyable playing session.

Internal validity. We did not tune some of the HASTE’s parameters. For instance, we discarded video slices shorter
than 5 seconds, since we assumed that any sort of statistical feature we could compute on their frames (e.g., the median
of the 𝐻𝑀 heatmap distribution) would be unreliable. Similarly, we identify candidate stuttering only if at least two
subsequent pairs of frames exhibit a SSIM higher than the set threshold (0.9999). The latter is a possible parameter to
tune as well. Our decision of avoiding fine-tuning these parameters was driven by the high cost of manually validating
different variants of HASTE. However, the lack of parameters fine-tuning does not invalidate our findings, but makes
the reported performance a sort of lower-bound for what could be achieved by systematically adjusting the HASTE
parameters. To answer RQ1, we mostly relied on the labeling performed by the authors, who might have been biased
in the evaluation. To alleviate this threat, we involved two external validators to evaluate the 320 manually-analyzed
slices. Such validators were asked to see the labels we provided and classify them either as “correct” or “incorrect.” Both
the evaluators reported that all the instances had been correctly validated. This suggest that there was no significant
bias, thanks to the methodology we used to label the segments. We involved the same validators to re-assess the labels
we assigned to the segments to answer RQ3, which focused on the identification of stuttering events. Specifically, we
asked them to double-check the label we assigned to (i) the 42 stuttering events identified by the authors, and (ii) the
ones that HASTE or any baseline classified as stuttering event (343 events), totaling 385 evaluations. We used the same
methodology adopted for the check of RQ1. Again, the evaluators reported no disagreement with our evaluations.

We set the threshold for splitting the video in segments in the Video Slicer component of HASTE to 0.3. We chose
such a value because we wanted to find clear cut points. We analyzed the distribution of similarities between pairs of
consecutive frames in the videos we analyzed to answer RQ1. Fig. 7 reports the results of such an analysis. It is clear
that similarity values below 0.8 are always outliers for all the videos. This shows that varying the threshold in this
range would result in the inclusion/exclusion of relatively few data points (outliers).

23

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933

Fig. 7. Distribution of color histogram similarity values between pairs of consecutive frames.

We chose to set the threshold for the slicing at 5 seconds. It might be argued that different thresholds values might
allow to obtain better results. We conducted an analysis on the video segments discarded (lower than 5-seconds). In
detail, we examined the video segments of each gameplay analyzed in our study. We identified 75 segments shorter
than 5 seconds, of which 58 reported a duration of 0 seconds (less than 30 FPS detected). The cumulative duration of
the remaining 17 segments was 43 seconds from a total of about two hours of gameplay videos analyzed. Specifically,
two segments had a duration of 4 seconds (e.g.,, depicting a part of gameplay where the player accesses a game map),
while three segments had a duration of 3 seconds, and the remainder mostly lasted only one second. In addition, in 3
out of the 10 videos analyzed, no segments were deleted based on the 5-second threshold. We observed that these short
interruptions mostly occur when lighting significantly changes in the game. For example, these short segments often
correspond to bomb explosions, which light up the scene, switches to night mode via infrared, or brief accesses and
configurations of game maps. We chose not to combine these short video segments because our goal is to identify scene
changes to distinguish between gameplay and non-gameplay segments. Merging segments could increase the risk of
classification errors. Therefore, the 5-second threshold was determined as a pragmatic balance between excluding too
many short, potentially uninformative segments and maintaining the integrity of significant scene changes within our
analysis framework. On the other hand, the impact of the using a slightly larger threshold would have been irrelevant.
We analyzed how many segments are in the range between 5 and 10 seconds, and we observed that there are only 13
segments between 5 and 10 seconds.

We chose 3 as a minimum number of consecutive identical frames to trigger the detection of a stuttering event. This,
however, could be a sub-optimal choice. To evaluate how many consecutive identical frames are needed to identify

24

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056

Table 9. Identification of stuttering events with different numbers of identical consecutive frames.

2 frames 3 frames 4 frames

Evaluator 1 0 3 3
Evaluator 2 0 1 1
Evaluator 3 0 2 2

stuttering events, we conducted an evaluation with humans to understand to what extent they could detect stuttering
in different scenarios. We focused on an approximately one-minute gameplay video. We introduced stuttering events
by duplicating frames at three different points in the video, creating three potential stuttering scenarios to assess the
visibility and perceptibility of stuttering for users. These scenarios included (i) two consecutive identical frames, (ii)
three consecutive identical frames (the validation approach used in HASTE), and (iii) four consecutive identical frames.
We asked three external evaluators to watch the videos and mark the seconds in which they perceived stuttering events.
The results of this validation process revealed that none of the evaluators identified stuttering with only two duplicate
frames. However, in scenarios with three and four consecutive identical frames, the results varied. We report the details
of the results in Table 9.

These results suggest that duplication of two consecutive frames is probably not sufficient to be perceived as stuttering
by viewers, while duplication of three or more frames leads to consistent detection of stuttering, thus supporting our
heuristic choice in HASTE.

External validity. We initially aimed to include in our survey developers from around the world to get a more
comprehensive perspective. In the end, we decided not to do this because, in an initial version of the survey, we received
several responses from bots. To reduce the manual effort in discarding such responses, we decided to limit the survey
and get responses only from the United States and European countries. As a result, however, we might have missed
several participants, especially from countries with significant game development industries such as Canada and Japan.
To analyze the impact of their exclusion, we simulated a new run of the survey we conducted on Prolific with all the
filters we used in our survey, except for the nationality, that we set to Canada and Japan. Prolific warned that fewer
than 25 eligible participants would be available, and it did not report the exact number for privacy-related reasons.
Thus, we believe that our selection criteria did not significantly alter the results we would have achieved by including
such nationalities as well.

In our survey we could only involve 26 participants. It is possible that larger or different samples of practitioners
could have resulted in different conclusions. Nevertheless, when analyzing the open answer questions, we noticed
recurring themes and a lack of new themes (which might indicate that we reached saturation). For this reason, we
believe that, despite the limitations, the sample is sufficient for our purposes. Being the evaluation mostly based on
manual analysis (with the exception of RQ2), we limited our study to a total of 30 videos (20 for RQ1 and 10 for RQ3),
excluding the 75 used for RQ2. Still, this involved multiple authors manually analyzing over 10 hours of videos. Two
primary concerns revolve around the relatively small sample sizes in both the survey and structured interviews. In
the initial survey, only 26 participants were involved. However, it is imperative to underscore that this subset was
carefully selected from a broader population, but we focus only on participants connected with the world of video
game development. This strategic selection ensured that responses were not only more informative but also aligned
with the specific prerequisites outlined for our study. Similarly, the structured interviews were constrained to a mere
two participants. This limitation was attributed to the challenges in interfacing with video game developers actively

25

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179

engaged in their professional roles. Despite the small number, it’s crucial to acknowledge that these interviews involved
two senior developers. This allows us to give robust foundation to the insights gleaned, considering the experience and
expertise possessed by the interviewees.

8 RELATEDWORK

We discuss techniques proposed in the literature for quality assurance in video games through mining of gameplay
videos and playtesting. In literature there are several works relying on video analysis in software engineering in general
[4, 20, 26, 44].

In recent years, video screen recordings are becoming increasingly common for users to communicate problems to
developers because they effectively convey what the user sees [5, 9]. Similarly, the analysis of gameplay videos can play
a key role in game testing. Through the analysis of gameplay videos, developers can identify and document software
bugs that may not be easily detected by traditional testing methods. Video-based bug reports are becoming increasingly
popular for mobile applications [10, 17, 46]. Feng et al. [11] introduce CAPdroid, an automatic approach that use image
processing and convolutional deep learning models to segment bug recordings, infer user action attributes, and generate
subtitle descriptions. Krieter et al. [16] present a method for analyzing mobile application usage in detail by generating
log files based on mobile screen output.

Video games can face a multitude of challenges. TrueLove et al. [35] introduce a taxonomy to identify the reported
issues within these games. These challenges encompass aspects like game balance, including issues tied to the game’s
artificial intelligence (AI).

A strategy to support developers in finding quality issues in video games consists in analyzing gameplay videos
released by players. Since the phenomenon of publishing gameplay videos is relatively recent, only a few studies have
emphasized their value for identifying problems in video games.

Lewis et al. [18] were the first to realize the possible usefulness of analyzing gameplay video. They introduced a
taxonomy of video game bugs based on a collection of gameplay videos, when the phenomenon was not yet so spread.

Mnih et al. [21] used gameplay videos as input for a convolutional neural network to learn how to play Atari games.
More recently, Lin et al. [19] manually labeled 96 gameplay videos to train and test a Machine Learning-based

approach for automatically detecting gameplay videos that report functional bugs. Taesiri et al. [33] present a search
method that retrieves relevant video from large archives of gameplay videos related only on game physics problem. To
the best of our knowledge, HASTE is the first approach that automatically detects stuttering events from gameplay
videos.

Previous work defined approaches to support developers in testing video games, aiming at identifying functional and
nonfunctional unexpected behaviors before the release. Iftikhar et al. [15] proposed a model-based testing approach
for performing black-box testing of platform games. A crucial challenge of such approaches is that some issues might
only occur after executing a specific set of moves, which requires a certain level of intelligence. Therefore, Deep
Reinforcement Learning (RL) has been explored to provide competitive and intelligent “human-like” support. Pfau et al.

[24] introduced ICARUS, a framework for autonomous video game playing, testing, and bug reporting from which it is
possible to extract information about the problems identified (e.g., crash and stuck events).

Zheng et al. [48] present Wuji, an approach for automatically finding crash, stuck, logical, and balance problems by
using evolutionary algorithms, RL and multi-objective optimization.

Wu et al. [45] defined an approach based on RL to perform regression testing, while Ariyurek et al. [3] defined
synthetic and human-like agents, based on a combination of RL and Monte Carlo Tree Search (MCTS).

26

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302

Ahumada and Bergel [1] introduced an approach based on genetic algorithms to allow developers to reproduce
functional bugs by reconstructing the sequence of actions that lead to a specific faulty state of the game.

Guglielmi et al. [13] introduced GELID an automated approach to identify gameplay videos segments in which
streamers reported issues. Given a set of gameplay identify issues through subtitle and image analysis. In order to extract
relevant information from gameplay videos (i) identify video segments in which streamers experienced anomalies;
(ii) categorize them based on their type (e.g., logic or presentation); cluster them based on (iii) the context in which
appear (e.g., level or game area) and (iv) on the specific issue type (e.g.,, game crashes). In addition, TrueLove et al. [36]
based on the work just mentioned intoduce an automated approach based on machine learning to identify whether a
segment of a gameplay video contains occurrences of bugs. On the other hand, thier approach is designed to process
video segments regardless of the contents of the transcript text.

To the best of our knowledge, the only approach that aims at achieving a goal similar to HASTE is RELINE, defined
by Tufano et al. [37]. RELINE is the first technique to automatically detect game areas in which the frame-rate drops (i.e.,
areas that might trigger stuttering events). To do this, the authors trained a RL-based agent able to play a given game
with the aim of (i) achieving the best results in the game, like a player would do, and (ii) minimizing the frame-rate.
While RELINE is meant to be executed by developers before the release, HASTE supports them in beta-testing and after
the release, when gameplay videos from human players are available. Therefore, HASTE and RELINE play different
roles in testing video games and they are not interchangeable and the two techniques can be used together.

9 CONCLUSION AND FUTUREWORK

Stuttering is a relevant problem in video game development since it can significantly impact the gaming experience and,
thus, lead to poor perceived quality of the product. The identification of stuttering events is, however, quite challenging.
Indeed, the “search space” in which they could manifest is huge in modern video games.

We presented HASTE, an approach that allows video game developers to automatically detect stuttering events
documented in gameplay videos from Twitch and YouTube so that they can try to reproduce and fix them. We validated
the three main steps of HASTE on a total of 105 videos. As for the two preliminary steps, our results show that HASTE
(i) is able to accurately split videos in visually coherent slices, and (ii) is able to distinguish slices containing gameplay
from the ones with other contents (e.g., ads). When looking at HASTE as a whole, we found that it is able to achieve
significantly better results than the baselines, with an overall 71% recall and 89% precision.

The results of two interviews we conducted with expert video game developers to assess the applicability of HASTE
in an industrial context highlight its strengths in identifying potential stuttering events, leveraging the vast amount of
data available online. On the other hand, such interviews also highlight the limitations of HASTE: First, it might not
provide enough information to reproduce the issue, and second, it might report false positives (i.e., stuttering events not
due to the game but to other incidental problems). Both participants provide valuable insights on addressing current
limitations.

Future work will include both a broader evaluation of HASTE and experiments aimed at fine-tuning some of its
parameters. All code and data used in our study is publicly available in our replication package [2].

REFERENCES
[1] Tomás Ahumada and Alexandre Bergel. Reproducing bugs in video games using genetic algorithms. In 2020 IEEE Games, Multimedia, Animation

and Multiple Realities Conference (GMAX). IEEE, 1–6.
[2] Anonymus. Replication Package of "Automatic Identification of Game Stuttering via Gameplay Videos Analysis". https://figshare.com/s/

600d3be6169203ce6cac.

27

https://figshare.com/s/600d3be6169203ce6cac
https://figshare.com/s/600d3be6169203ce6cac

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425

[3] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. Automated video game testing using synthetic and humanlike agents. IEEE Transactions on Games
13, 1 (2019), 50–67.

[4] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou. Extracting and analyzing time-series HCI data from screen-captured
task videos. Empirical Software Engineering 22, 1 (2017), 134–174.

[5] Carlos Bernal-Cárdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian Marcus, and Denys Poshyvanyk. Translating video recordings of
mobile app usages into replayable scenarios. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 309–321.

[6] Leo Breiman. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. SMOTE: synthetic minority over-sampling technique. Journal of

artificial intelligence research 16 (2002), 321–357.
[8] Jacob Cohen. Statistical power analysis for the behavioral sciences. Routledge.
[9] Nathan Cooper, Carlos Bernal-Cárdenas, Oscar Chaparro, Kevin Moran, and Denys Poshyvanyk. It takes two to tango: Combining visual and

textual information for detecting duplicate video-based bug reports. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 957–969.

[10] Sidong Feng and Chunyang Chen. Gifdroid: Automated replay of visual bug reports for android apps. In Proceedings of the 44th International
Conference on Software Engineering. 1045–1057.

[11] Sidong Feng, Mulong Xie, Yinxing Xue, and Chunyang Chen. Read It, Don’t Watch It: Captioning Bug Recordings Automatically. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2349–2361.

[12] Google Forms. https://www.google.com/forms/about/. [Online].
[13] Emanuela Guglielmi, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto. Using gameplay videos for detecting issues in video games. Empirical

Software Engineering 28, 6 (2023), 136.
[14] Gang Hu, Linjie Zhu, and Junfeng Yang. AppFlow: using machine learning to synthesize robust, reusable UI tests. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 269–282.
[15] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah Mahmood. An automated model based testing approach for platform

games. In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE, 426–435.
[16] Philipp Krieter and Andreas Breiter. Analyzing mobile application usage: generating log files from mobile screen recordings. In Proceedings of the

20th international conference on human-computer interaction with mobile devices and services. 1–10.
[17] Hiroki Kuramoto, Masanari Kondo, Yutaro Kashiwa, Yuta Ishimoto, Kaze Shindo, Yasutaka Kamei, and Naoyasu Ubayashi. Do visual issue reports

help developers fix bugs? a preliminary study of using videos and images to report issues on github. In Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension. 511–515.

[18] Chris Lewis, Jim Whitehead, and Noah Wardrip-Fruin. What went wrong: a taxonomy of video game bugs. In Proceedings of the fifth international
conference on the foundations of digital games. 108–115.

[19] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. Identifying gameplay videos that exhibit bugs in computer games. Empirical Software Engineering
24, 6 (2019), 4006–4033.

[20] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. Code, camera, action: How software developers document and share program
knowledge using YouTube. In 2015 IEEE 23rd International Conference on Program Comprehension. IEEE, 104–114.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[22] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. Automatically discovering, reporting
and reproducing android application crashes. In 2016 IEEE international conference on software testing, verification and validation (icst). IEEE, 33–44.

[23] OpenCV. https://opencv.org. [Online].
[24] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. Automated Game Testing with ICARUS: Intelligent Completion of Adventure Riddles via

Unsupervised Solving. Association for Computing Machinery, New York, NY, USA.
[25] Cristiano Politowski, Fabio Petrillo, and Yann-Gaël Guéhéneuc. A survey of video game testing. In 2021 IEEE/ACM International Conference on

Automation of Software Test (AST). IEEE, 90–99.
[26] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco Oliveto, Barbara Russo, Sonia Haiduc, and Michele Lanza. Codetube:

extracting relevant fragments from software development video tutorials. In 2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 645–648.

[27] Prolific. https://www.prolific.co/. [Online].
[28] PyTube. https://github.com/pytube/pytube. [Online].
[29] B. Rosner. Fundamentals of Biostatistics (7th edition ed.). Brooks/Cole, Boston, MA.
[30] Satista. https://www.statista.com/topics/868/video-games. [Online].
[31] Scikit-image. https://scikit-image.org. [Online].
[32] John Richard Smith. Integrated spatial and feature image systems: Retrieval, analysis and compression. Columbia University.
[33] Mohammad Reza Taesiri, Finlay Macklon, and Cor-Paul Bezemer. CLIP meets GamePhysics: Towards bug identification in gameplay videos using

zero-shot transfer learning. In Proceedings of the 19th International Conference on Mining Software Repositories. 270–281.
[34] The Last of Us. https://youtu.be/yH5MgEbBOps?t=3494. [Online].

28

https://www.google.com/forms/about/
https://opencv.org
https://www.prolific.co/
https://github.com/pytube/pytube
https://www.statista.com/topics/868/video-games
https://scikit-image.org
https://youtu.be/yH5MgEbBOps?t=3494

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548

[35] Andrew Truelove, Eduardo Santana de Almeida, and Iftekhar Ahmed. We’ll fix it in post: what do bug fixes in video game update notes tell us?. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 736–747.

[36] Andrew Truelove, Shiyue Rong, Eduardo Santana de Almeida, and Iftekhar Ahmed. Finding the Needle in a Haystack: Detecting Bug Occurrences
in Gameplay Videos. arXiv preprint arXiv:2311.10926 (2023).

[37] Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco Oliveto, and Gabriele Bavota. Using Reinforcement Learning for Load
Testing of Video Games. In 44th IEEE/ACM 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022.
ACM, 2303–2314. https://doi.org/10.1145/3510003.3510625

[38] Twitch. https://www.twitch.tv/. [Online; June 2011].
[39] Twitch-dl. https://github.com/ihabunek/twitch-dl/. ([n. d.]). [Online].
[40] Twitch Stream Time. https://twitchtracker.com/statistics/stream-time. [Online].
[41] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions

on Image Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861
[42] WEKA. http://www.cs.waikato.ac.nz/ml/weka/. [Online].
[43] What is microstuttering and how do I fix it. https://www.pcgamer.com/what-is-microstutter-and-how-do-i-fix-it/. [Online].
[44] Huijuan Wu, Yuepu Guo, and Carolyn B Seaman. Analyzing video data: A study of programming behavior under two software engineering

paradigms. In 2009 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE, 456–459.
[45] Yuechen Wu, Yingfeng Chen, Xiaofei Xie, Bing Yu, Changjie Fan, and Lei Ma. Regression Testing of Massively Multiplayer Online Role-Playing

Games. In 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 692–696.
[46] Yanfu Yan, Nathan Cooper, Oscar Chaparro, Kevin Moran, and Denys Poshyvanyk. Semantic GUI Scene Learning and Video Alignment for Detecting

Duplicate Video-based Bug Reports. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.
[47] YouTube. https://www.youtube.com. [Online; June 2011].
[48] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic

online combat game testing using evolutionary deep reinforcement learning.
[49] Georg Zoeller. Game development telemetry in production. Game analytics: Maximizing the value of player data (2013), 111–135.

29

https://doi.org/10.1145/3510003.3510625
https://www.twitch.tv/
https://github.com/ihabunek/twitch-dl/
https://twitchtracker.com/statistics/stream-time
https://doi.org/10.1109/TIP.2003.819861
http://www.cs.waikato.ac.nz/ml/weka/
https://www.pcgamer.com/what-is-microstutter-and-how-do-i-fix-it/
https://www.youtube.com

	Abstract
	1 Introduction
	2 Motivating Study
	2.1 Survey Design
	2.2 Results

	3 HASTE: Hinter for gAme STuttering Events
	3.1 Video Slicer
	3.2 Video Slice Classifier
	3.3 Cropping Frames Using the Heatmap
	3.4 Stuttering Detector

	4 Empirical Study Design
	4.1 Context Selection
	4.2 Data Collection and Analysis

	5 Results Discussion
	5.1 RQ1: Evaluation of Video Slicer.
	5.2 RQ2: Evaluation of Video Slice Classifier.
	5.3 RQ3: HASTE for Identifying Stuttering Events.
	5.4 Generalizability of HASTE
	5.5 Discussion

	6 Industrial Applicability of HASTE
	6.1 Interviews Design
	6.2 Results

	7 Threats to Validity
	8 Related Work
	9 Conclusion and Future work
	References

