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Modern video games are extremely complex software systems and, as such, they might suffer from several types of post-release issues.
A particularly insidious issue is constituted by drops in the frame rate (i.e., stuttering events), which might have a negative impact on
the user experience. Stuttering events are frequently documented in the million of hours of gameplay videos shared by players on
platforms such as Twitch or YouTube. From the developers’ perspective, these videos represent a free source of documented “testing
activities”. However, especially for popular games, the quantity and length of these videos make impractical their manual inspection.
We introduce HASTE, an approach for the automatic detection of stuttering events in gameplay videos that can be exploited to
generate candidate bug reports. HASTE firstly splits a given video into visually coherent slices, with the goal of filtering-out those
that not representing actual gameplay (e.g., navigating the game settings). Then, it identifies the subset of pixels in the video frames
which actually show the game in action excluding additional elements on screen such as the logo of the YouTube channel, on-screen
chats etc. In this way, HASTE can exploit state-of-the-art image similarity metrics to identify candidate stuttering events, namely
subsequent frames being almost identical in the pixels depicting the game. We evaluate the different steps behind HASTE on a total
of 105 videos showing that it can correctly extract video slices with a 76% precision, and can correctly identify the slices related to
gameplay with a recall and precision higher than 77%. Overall, HASTE achieves 71% recall and 89% precision for the identification of
stuttering events in gameplay videos.

CCS Concepts: • Software and its engineering → Software evolution;Maintaining software; Software defect analysis.
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1 INTRODUCTION

The video game industry is a billion-dollar business, with a market value of more than $95B in the US alone, as of
2021[30]. Just like other software systems, video games can be affected by several types of functional and nonfunctional
issues.
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Some of such problems are more relevant for video games than for other types of software. One of them is constituted
by drops in the frame rate (also referred to as “stuttering”). Such an issue makes the user experience not only less
entertaining, but even frustrating when it creates impediments for properly playing the game.

The relevance of stuttering events for game developers is well-known. Politowski et al. [25] reported that the
developers partially automated game performance testing for two out of the five games considered in their study.
Naughty Dog reportedly employed specialized profiling tools [34] while developing and testing The Last of Us for
detecting stuttering events. Finally, Truelove et al. [35] report that game developers agree that Implementation response

problems may severely impact the game experience.
For these reasons, researchers recently introduced techniques to detect areas of the game affected by stuttering

(see e.g., [37]). While these techniques could help in game testing, it is practically impossible to thoroughly test all
the possible interactions between the player(s) and the environment. Therefore, stuttering events might still occur
in specific conditions (e.g., when many players are in the same area of the game) that are not detected before the
release and can only be reported by the end users. This could happen through classic bug-reports possibly accompanied
by videos documenting the observed behavior. Video-based bug reports are becoming more and more popular, as
also demonstrated by the several research works studying this phenomenon [5, 9, 14, 22]. When it comes to video
games, video-based bug reports become fundamental to report issues such as stuttering events. Besides bug reports
explicitly opened by end users, stuttering events are implicitly documented in the million of hours of gameplay
videos available in platforms such as Twitch [38] or YouTube [47]: Twitch content creators stream, on average, 2.2M
hours of videos every day [40], most of which are gameplay videos. Consider, for example, the gameplay video at
https://youtu.be/1LHHLaSRW8Y?t=79. At minute 01:22, a stuttering event starts and lasts for a few seconds. Developers
could use the information provided in the video to localize the problem and fix it. Previous work explored detecting
different types of issues [13, 36], but no previous work specifically focused on stuttering events.

In this paper, we aim at tackling the problem of automatically finding candidate stuttering events in gameplay videos.
We preliminarily surveyed 26 professional game developers, aiming at understanding to what extent solving such a
problem would be relevant in the first place. Our results suggest that practitioners would be interested in such an
approach and that it would be complementary to tools that they already use (e.g., telemetry [49]).

Fig. 1. Gameplay video with extraneous elements

It might be argued that finding stuttering events is conceptually easy: By definition, stuttering occurs when two or
more subsequent frames in a gameplay video are identical. However, there are several problems to address. First, there
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are game scenes in which identical consecutive frames do not indicate stuttering (e.g., game settings). Thus, a naive
approach that checks the equality of consecutive frames might falsely report stuttering events. Second, there might be
parts of gameplay videos that do not show the video game itself but other elements, such as the streamer’s face.

Fig. 1 depicts a concrete example of a gameplay video showing, besides the game itself, external elements such as the
player recording the video. In this case, checking the equality of subsequent frames is also not enough, since while the
“game-related pixels” might not change (due to stuttering), the ones depicting the player may change, thus missing the
stuttering identification.

To solve those problems, we introduce HASTE (Hinter for gAme STuttering Events). HASTE works in four steps.
First, it splits a gameplay video into visually coherent slices, based on major changes in the color schema of the frames
shown on screen. Second, HASTE automatically classifies each extracted slice as gameplay or non-gameplay (e.g.,
game settings, advertisement) using a machine-learning model. Third, it further analyzes each video slice classified as
gameplay to identify the parts of the frame actually showing the game (i.e., excluding unrelated elements such as the
player or an on-screen chat). Finally, HASTE checks each pair of consecutive frames and it identifies stuttering events
in which the relevant pixels (i.e., the ones depicting the game) are (almost) identical.

We validate the steps behind HASTE on a total of 105 videos, of which about 10 hours of contents manually analyzed
by the authors. We found that HASTE is accurate both in determining slicing points for the videos (76% precision)
and detecting non-gameplay events to filter them out (90% precision and 88% recall). In terms of stuttering event
identification, HASTE is largely more effective than three simpler baselines with which we compared it, achieving,
overall, 71% recall and 89% precision. Finally, we interviewed two senior game developers aiming at understanding
the applicability of HASTE in an industrial context. They generally provided positive feedback on the usefulness and
applicability of HASTE in a developer’s workflow due to the possibility of accessing a large amount of data available
online. In addition, they highlight a major challenge related to the use of gameplay videos in the first place: HASTE
might find false positives, i.e., stuttering events that are not related to the gameplay video but to other incidental
circumstances (e.g., screen recording software, specific hardware configurations). This is a problem shared with several
approaches and tools typically used by developers (e.g., static code analysis tools). Still, HASTE could provide some
guidance to let developers understand what they should focus on.

2 MOTIVATING STUDY

We ran a survey with game development practitioners to understand the possible relevance of an automated approach
that detects stuttering events in gameplay videos.

2.1 Survey Design

The goal of this study is to answer the following research question: RQ0: To what extent is it useful to identify stuttering

events in video games through the use of gameplay videos? The context is represented by objects (i.e., a survey) and
subjects (i.e., 26 practitioners from the game development industry).

Participants Selection. We recruited participants through Prolific [27], a platform that helps to select participants
for research studies. We looked for candidate participants who (i) were located in the United States and Europe, (ii)
had experience in the field of “Computer Science” and “Information Technology (IT)”, and (iii) declared to be video
game enthusiasts. We initially decided to also have as filter an active job in the video game industry. However, this
resulted in only two candidates available on Prolific. Thus, we removed such a filter and relied on the initial questions
of the survey to discard participants without game development experience. Based on the filters applied, we invited 248
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candidate participants. We payed 5$ to each participant who completed the survey in all its parts (i.e., by also providing
relevant answers to the open questions).

Survey Questions. Participants were initially presented with a welcome page, which explained the goal of the
study, reported its expected duration (∼15 minutes) and other basic information. If they agree to participate, the main
survey started, which consisted of four phases. In the first one we collected demographic information. As a preliminary
question, we asked whether the participant had experience with game development or testing. If the answer to the latter
question was no, the survey stopped and the participant was excluded from the study. Otherwise, we asked additional
information (i.e., job position and number of years of experience, examples of video games they worked on).

In the second phase, we asked questions aimed at understanding whether and how developers identify stuttering events.
Specifically, we asked (i) if they actively try to identify stuttering events during beta testing of a video game; (ii) the
percentage of bug reports that regards stuttering events, in their experience; and (iii) if they use telemetry to detect
stuttering events. Based on the last question, the participants who declared to use telemetry were asked to indicate on a
Likert scale from 1 to 5 (the higher the better): (i) what accuracy level do the telemetry-based tool achieve in detecting
stuttering events, and how complete the information telemetry provides is to (ii) reproduce the issues and (iii) fix them.
The participants had to motivate all their answers in open questions. Finally, we asked if they use other tools to identify
stuttering events.

In the third phase, we asked questions aimed at understanding whether developers use data available online to identify
stuttering events in video games. Specifically, we asked which platforms they usually get data from (YouTube, Twitch,
Steam, Discord, or others) and to add details on how they do that (open answer).

In the fourth phase, we asked question to assess the possible usefulness of an automated approach for identifying issues

in gameplay videos. Specifically, we asked participants to rate, on a Likert scale from 1 to 5 (the higher the better),
the extent to which parts of the gameplay video documenting stuttering events would be useful for (i) replicating the
problems and (ii) fixing them. We also explicitly asked what other pieces of information would be useful to replicate
and fix errors that cause stuttering events. Finally, we asked (iii) to what extent they would be interested in using an
automated approach for detecting stuttering events from gameplay videos on a video game they are developing/testing,
and (iv) whether they would use this approach in combination with other testing approaches they already use or to
replace them. Also in this case, we asked to motivate the answers. We implemented our survey in Google Forms [12].
The complete list of questions and anonymized participants’ answers is available in our replication package [2].

Data Collection and Analysis. We kept the survey available to the invited practitioners for eight days because we
got immediate feedback frommost candidate participants. We collected a total of 53 responses: 3 have been automatically
rejected by the platform because the participants exceeded the allowed time limit; 6 have been excluded since the
participants declared no experience in game development/testing.

We manually analyzed the remaining 44 to assess the quality of the responses provided by the participants. We
discarded the responses for which the open questions were not filled with relevant content, which we used as proxy for
the commitment of the participant.

To evaluate the relevant content, we analyzed the individual responses of the participants. In detail, we analyzed
the completeness and consistency of open-ended responses. Content was assessed as relevant when the response
was complete and directly related to the question. We report some examples of responses that were not considered
consistent with the question asked and, thus, excluded from the assessment. As for the question regarding the use
of telemetry, a participant provided the definition of telemetry: “telemetry is the term used to denote any source of
data [...] There are many popular applications of telemetry in games [...].” However, no motivation was provided. In
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addition, another participant provided for two different questions the same generic answer. Specifically, when we asked
what other pieces of information is needed to reproduce the stuttering event and to fix a problem, such a participant
responded “Disable game DVR. Disable dynamic ticks and HPET. Disable visual effects. Disable Windows features you
don’t need. Disable full-screen optimizations. [...] Increase virtual memory. Delete unnecessary programs. Update your
RAM. Reset your BIOS to optimized defaults.”

We ended up with 26 valid responses. We summarize the quantitative data through boxplots and barplots, and report
examples of interesting open answers we collected.

2.2 Results

Most of the participants (73%) reported that they have (or had in the past) experience as developers/testers in the
game development industry, while the remaining 27% still had game development experience, but not in industry (e.g.,
open-source projects). Out of the ones with industrial experiences, 26% are/were testers, 42% are/were developers,
and the remaining 32% have/had other roles (e.g., AI specialist). The average experience in game development of the
participants is 2 years, with 19% of them having more than 3 years of experience. Fig. 2 summarizes the data collected
for the subsequent parts of the survey we discuss below.

Identification of Stuttering Events. Most of the participants (76%) reported that they are interested in identifying
stuttering events during the beta-testing of a video game. The average reported percentage of bug reports related to
stuttering is ∼15%, with a median ∼10% (top-left part of Fig. 2). As expected, most of the participants use telemetry
for detecting stuttering events (62%). While they mostly agree that telemetry is useful for detecting stuttering events
(median/mode of 4), not all of them think that it can be useful for reproducing and fixing the issue (median for
reproduction: 3.5; median for fixing: 4). Some participants reported that telemetry does not provide sufficient information
to pinpoint the cause of the issue. For example, one practitioner reported that, sometimes, stuttering events are hardware-
related and, thus, difficult to reproduce without the exact setup of the end user.

Usage of Online Platforms. The majority of participants (77%) use YouTube to collect bug-related information
about games, with several of them also focusing on more communication-oriented platforms such as Discord (58%) and
forums (50%). Some of the participants claim to use YouTube to collect information about game issues since “... following
a video that specifically addresses the problem is often the best approach. On the other hand another participant states
that ”Sometimes I search the forums for common problems in games and then try to find them in the game I am testing.“
In addition, some participants who use more than one platform say that ”If something is public enough, then it should
go back to the developers and testers [...] using social media is a great way to get information about what is causing
any number of problems.“

We observed that the large majority of participants use YouTube, while a few of them use Twitch (∼5%). While no
participant explicitly reported this, it might be the case that they generally prefer the former over the latter because it
contains higher-quality videos (often edited before being posted), while Twitch mostly features live/past-live videos.

Usefulness of an Approach for Identifying Stuttering Events in Gameplay Videos. The bottom part of Fig. 2
summarizes participants’ feelings about the usefulness of an approach for automatically detecting stuttering events in
gameplay videos. Most of them believe such an approach would be more useful to reproduce and fix stuttering-related
issues than telemetry (even if marginally, given that the median, in this case, is 4 for both the questions). The word
cloud in the lower-right part of Fig. 2 reports information developers might need to replicate/fix stuttering-related
issues (besides gameplay videos). Most of them report hardware information (CPU - and GPU -related information).
Finally, 86% of participants would like to use such an approach in combination with existing tools (e.g., telemetry),
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while the remainder said that it could replace them. None of the participants reported a lack of interest in testing such
an approach (with a median of 4 and no answer below 3).

Fig. 2. Survey results.

3 HASTE: HINTER FOR GAME STUTTERING EVENTS

Fig. 3 overviews the steps behind HASTE. The process starts with a list of gameplay videos which developers want to
analyze. These are supposed to be gameplay videos related to video games they maintain. The list of videos is provided
to the Gameplay Videos Crawler, which is in charge of downloading them. Our current implementation supports
the download of gameplay videos from YouTube [47] and Twitch [38]. More often than not, the downloaded videos
include, besides the gameplay itself, also additional content which is not interesting to identify stuttering. For example,
the player (i.e., the person recording the video) might interrupt the gameplay to talk to the viewers. For this reason,
HASTE implements a mechanism to identify, within a given video, the fragments representing actual gameplay. This is
accomplished through two components: (i) the Video Slicer splits the video into different slices, based on drastic changes
in the video frames (e.g., the gameplay is interrupted to show an advertisement, thus causing most of the pixels on
screen to change); (ii) a Video Slice Classifier, which is a machine learning model trained to discriminate between video
slices showing and not showing gameplay. Video slices not classified as gameplay are discarded, while the “gameplay
slices” are further analyzed. Indeed, it is not possible to just compare subsequent frames to check whether they are
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Fig. 3. HASTE overview.

identical or not to identify stuttering events. This is due to the presence on screen of additional elements such as the
camera recording the player (see e.g., Fig. 1). For example, it is possible that despite a game stuttering and, thus, a
perfect match between the pixels representing the game in two subsequent frames, the latter are different due to the
player moving or to other elements appearing on the screen (e.g., subscription notifications). For this reason, HASTE
features a Heatmap Computation step aimed at identifying, in a given gameplay slice, the pixels of its frames which
change more frequently.

These are supposed to be the pixels in which the game is displayed and allow to crop the frames to only focus on this
part when computing the similarity between subsequent frames. Cropped subsequent frames being almost identical are
identified as candidate stuttering. In the following we detail each of the HASTE’s steps.

3.1 Video Slicer

Given a gameplay video as input, the Video Slicer extracts and stores all its frames. This is done by using the OpenCV
library [23]. To make the following steps of HASTE faster, all frames are resized to a resolution of 320 × 180. Each pair of
subsequent frames is then compared using their color histogram representation. Color histograms allow to summarize
an image as the number of its pixels having a pixel falling in specific color ranges. Using color histograms it is possible to
compare images by checking whether their “distribution of colors” is similar. Histograms are a typical method used for
extracting features from images and one of the most basic methodologies for computing image similarity [32]. Instead
of using the classic RGB (Red, Green, and Blue) color space, we use HSL (Hue, Saturation, and Level). Such a color
space allows to better detect the similarity between frames even when some effects are employed (e.g., fade-in, fade-out,
transitions). For example, if a fade-out effect is used, the hue and the saturation of all the pixels will likely remain the
same, while the level (i.e., the brightness) will uniformly reduce for all of them. A drawback of this representation is
that the similarity computation ignores the shapes and texture of the compared images. However, given the goal of the
Video Slicer (i.e., splitting a video when drastic changes in the video frames are observed), a similarity computation
based on color distributions is sufficient. For example, if a gameplay is interrupted by an advertisement, we expect
substantial changes in the color distribution of the frames.

We compute the similarity between each pair of subsequent frames in the video using the compareHist function
from OpenCV [23], which takes as input the two histograms to compare (i.e., the two images) and the method to
use for the similarity computation. For the latter, we use HISTCMP_CORREL, computing a correlation between the two
histograms and thus returning a value between -1 and 1, with 1 indicating a high similarity between images. Following
well-known guidelines used to interpret correlation coefficients [8], we split the video if two subsequent frames have a
correlation lower than 0.3 (i.e., no positive correlation). Such a process results in a set of video slices extracted from
the input video. We discard slices shorter than 150 frames (5 seconds) since, as it will be clear later, HASTE exploits
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information extracted from video slices to automatically classify them as gameplay or non-gameplay slices. A slice
shorter than 5 seconds does not contain enough information to allow for a reliable classification.

It is worth highlighting that the Video Slicer is not meant for extracting slices representing parts of the game that
humans would find semantically coherent but rather at detecting visually coherent slices. For example, let us imagine a
cutscene in which two visually different characters discuss in a shot-reverse shot in which they are alternately shown
on screen. We are not interested in having a single semantically coherent slice for the whole dialogue: Having a slice for
each (visually coherent) camera cut is good as well, as long as gameplay and non-gameplay parts (e.g., advertisements)
are not in the same slice since the next step assumes this for detecting and discarding non-gameplay slices.

3.2 Video Slice Classifier

Once extracted the slices from a video under analysis, they are provided as input to a machine learner in charge of
classifying them as gameplay or non-gameplay slices. HASTE exploits the Weka [42] implementation of the Random
Forest algorithm [6] for this task. The Random Forest builds a collection of decision trees with the aim of solving
classification-type problems, where the goal is to predict values of a categorical variable from one or more continuous
and/or categorical predictor variables. In our work, the categorical dependent variable is the type of video slice (i.e.,
gameplay or non-gameplay), and we use features extracted from the video slice as predictor variables. Two families of
features are exploited: heatmap-based and similarity-based. We detail in the following these features, while in our study
design (Section 4) we explain how we trained and evaluated the classifier.

Heatmap-based features. Given the set of frames 𝑆 = {𝐹1, 𝐹2, . . . , 𝐹𝑛} in a given slice, we start by creating a 320 ×
180 𝐻𝑀 matrix in which each entry represents a pixel of the frames in 𝑆 (e.g., the entry in position [1, 1] represents the
pixel in the top-left corner of each frame). At the beginning, all 𝐻𝑀 entries are initialized to 0. Then, we perform a
pixel-by-pixel comparison between each subsequent pair of frames in 𝑆 (e.g., 𝐹1 vs 𝐹2) and, if a pixel in position [𝑖, 𝑗]
has a different color in the two frames, we increase by one the value of 𝐻𝑀 [𝑖, 𝑗]. At the end of this process, 𝐻𝑀 will
represent a heatmap showing how frequently each pixel in the 𝑆 ’s frames changed. Once created 𝐻𝑀 , we compute its
minimum, maximum, median, average, first and third quartile, and use those six statistics as features for the Random
Forest. Our assumption is that the frequency with which the pixels change could help in discriminating gameplay slices
from non-gameplay slices. For example, we assume that non-gameplay slices in which the gamer is talking in full screen
foreground tend to have less pixel-level changes as compared to gameplay slices featuring the video game.

Similarity-based features.We start from the same set of frames 𝑆 in the slice and compute the correlation between
the color histograms of each subsequent pair of frames using HISTCMP_CORREL.

This process results in a distribution of correlations having 𝑛 − 1 values, where 𝑛 is the cardinality of 𝑆 . Indeed,
if 𝑆 = {𝐹1, 𝐹2, 𝐹3}, we compute the following correlations (𝐶𝑟 ): 𝐶𝑟 (𝐹1, 𝐹2) and 𝐶𝑟 (𝐹2, 𝐹3). For such a distribution we
compute the same six descriptive statistics previously described and provide them as additional features to the Random
Forest. The rationale here is that the color histogram similarity between frames could be different between gameplay

and non-gameplay slices. For example, an advertisement on screen is likely to exploit a more variegate and dynamic set
of colors as compared to a gameplay, which is usually characterized by a quite stable color scheme for a given game
scene.

3.3 Cropping Frames Using the Heatmap

Video slices classified by the Random Forest as gameplay are further analyzed to identify in them the pixels representing
the actual game. Indeed, as previously explained, before looking for stuttering events we must be able to focus the
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Fig. 4. Example of heatmap applied to several frames of the same slice.

attention on the pixels relevant for the game. For a given gameplay video slice, we exploit the previously built heatmap
𝐻𝑀 and compute its 90% percentile. This means identifying the top-10% of pixels which more frequently change in the
slice. It is indeed reasonable to think that the portion (i.e., subset of pixels) showing the actual game on screen is the
one changing more frequently, since it represents the core action of the game. Instead, parts of the screen showing ads,
chat messages, or the streamer, are likely to change less frequently.

All pixels falling below the 90% percentile are removed from all frames in 𝑆 (i.e., the frames of a given video slice). In
Fig. 4 we show an example of how such a process allows to focus the attention only on the part of the frames featuring
the game in action. In this example we use a transparency to still make it visible the part that would be cut from the
frames (i.e., the one in black). Since all frames belong to the same video slice, they are all cropped using the same
heatmap. The output of this step are cropped frames belonging to each gameplay slice (i.e., frames only including the
top-10% of changing pixels within the slice).

3.4 Stuttering Detector

In the last step of HASTE, the cropped frames are provided as input to the Stuttering Detector which is in charge of
comparing them looking for candidate stuttering events. The stuttering identification is based on a simple idea: If
subsequent cropped frames are identical, we can safely assume that a stuttering event is happening, since the cropped
frames, as explained, are supposed to focus on the game action. Given the set of cropped frames in a video slice, we
compute the similarity between each pair of subsequent frames by using the Structural Similarity Index (SSIM) [41].
SSIM has been proposed by Wang et al. as a way to overcome the shortcomings of classic image similarity techniques
(such as the previously described color histogram similarity) and it is based on the idea of comparing the images’
textures. The authors showed that the SSIM is the metric better capturing image similarity as perceived by humans [41],
which is what we need to identify stuttering events (i.e., cases in which humans perceive a high similarity between
subsequent frames, giving the impression of lagging). We used the SSIM implementation available in the scikit image
library [31], which returns a value between 0.0 and 1.0, with the latter identifying identical images.

We opted for a quite conservative detection of stuttering events since our goal is not to flood developers with
recommendations about possible stuttering events, but rather to provide precise recommendations (even at the cost
of losing some valid data points). In particular, the Stuttering Detector reports a candidate stuttering if the SSIM is at
least 1 − 𝜖 for two consecutive pairs of cropped frames. 𝜖 is a small number that developers can choose to increase
or decrease the number of candidate stuttering events returned by HASTE. If 𝜖 is 0, even a small imprecision in the
previous phases (e.g., in cropping) would result in a missed detection of a stuttering event. Therefore, we set 𝜖 = 0.0001,
so that, given the resolution of our frames (320 × 180 = 57,600 pixels), HASTE is able to tolerate a 5-pixel noise. We say
that a stuttering event is there if two consecutive pairs of cropped frames meet the similarity threshold to further deal
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with possible imprecisions of the frames-cropping stage: When we find two subsequent frames meeting our threshold,
we ask for a “confirmation” to the next pair of frames as well.

The number of consecutive pairs that should meet the threshold can be further increased in case developers want to
reduce the chances to obtain false-positive recommendations. Also, cases in which more than 30 subsequent pairs of
frames meet the similarity threshold are not treated as stuttering, since they are more likely to be due to events such as
the player pausing the game. The final output is a set of candidate stuttering events, reporting, for each analyzed video,
the frames at which the issues start (if any).

4 EMPIRICAL STUDY DESIGN

The goal of our study is to evaluate the effectiveness of HASTE in automatically identifying stuttering events in
gameplay videos. In particular, we want to assess HASTE in terms of its: (i) accuracy in automatically splitting gameplay
videos into visually coherent slices; (ii) ability to correctly classify actual gameplay video slices; and (iii) ability to
automatically identify stuttering events in gameplay videos. We aim at answering the following RQs:

RQ1: What is the accuracy of HASTE in automatically splitting gameplay videos into visually coherent slices? RQ1

assesses the accuracy of HASTE in automatically splitting gameplay videos into visually coherent slices (e.g., fragments
showing the same game scene, an advertisement). RQ1 evaluates the Video Slicer (Section 3.1).

RQ2: To what extent is HASTE able to correctly classify video slices relevant to the gameplay? RQ2 evaluates the Video
Slice Classifier (Section 3.2) focusing on its ability to classify the video fragments extracted by the Video Slicer as
gameplay or non-gameplay.

RQ3:To what extent is HASTE able to automatically identify stuttering events in gameplay videos? Our last research
question evaluates HASTE as a whole, verifying whether the stuttering events it identifies are true positives.

4.1 Context Selection

We built three video datasets, each one aimed at answering one of the formulated research questions. All datasets
have been extracted from either Twitch [38] or YouTube [47]. For the former, the Gameplay Videos Crawler relies on
the Twitch command-line interface (CLI) [39] while for the latter it exploits the Pytube library [28]. Both streaming
platforms allow to download videos by specifying characteristics of interest such as their resolution and FPS.

4.1.1 RQ1: Dataset for the evaluation of the Video Slicer. We collected 20 gameplay videos from Twitch starting from
the list of most popular videos, which is based on the popularity of the streamer and on the number of visualizations.
We targeted English videos having a duration between 10 and 40 minutes and being downloadable at 30 FPS at least.
Concerning the length thresholds, these have been defined to focus on videos which are long-enough to justify the
usage of the Video Slicer (e.g., slicing a 30-second video would probably be useless) while considering a maximum length
representative of most videos uploaded on these platforms. Table 1 reports the exact duration of each video. Overall,
this dataset features over seven hours of gameplay videos. All videos have been dowloaded in .mp4 format in 1280 ×
720 pixels resolution at 30 FPS.

4.1.2 RQ2: Dataset for the evaluation of the Video Slice Classifier. To evaluate the Video Slice Classifier we need to
build a dataset to train and evaluate the Random Forest model. This means creating a dataset of video slices labeled
as gameplay or non-gameplay. Manually building such a dataset would be quite expensive. Thus, we designed the
following automated process.
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To collect instances of non-gameplay slices, we downloaded the top-5 videos (in terms of visualizations) from each
of the top-10 YouTube non-game-related video categories (i.e., basketball, cooking, football, Formula 1, motors sport,
movies, music, news, sport, trends). Then, we run on them our Video Slicer and collected a total of 2,945 slices that we
can safely label as non-gameplay. Similarly, as representative of gameplay slices, we downloaded 5 gameplay videos
from each of the six game-related categories in YouTube (i.e., action, adventure, beat, riders, shooter, sport-game).
We made sure that the downloaded videos only contained gameplay scenes, without any sort of interruption due to
advertisements, the gamer speaking, etc. Again, we run the Video Slicer on the 30 gameplay videos, obtaining 1,546
slices labeled as gameplay. This is the dataset on which the Random Forest will be trained and tested.

4.1.3 RQ3: Dataset for the evaluation of HASTE as a whole. The third and last dataset aims at assessing the ability of
HASTE in identifying stuttering events in gameplay videos. We selected 10 videos from the list of popular gameplay
videos on YouTube. These videos have not been used to build the previously described datasets. Given the goal of RQ3,
we selected videos containing in their meta data (i.e., title, description, comments) the word “stuttering”. These videos
should provide data points useful to assess the ability of HASTE in identifying stuttering events. Table 3 reports the
duration of the 10 selected videos, which is ∼2 hours, in total.

4.2 Data Collection and Analysis

To address RQ1 we ran the Video Slicer on the set of 20 Twitch gameplay videos, collecting a total of 1,909 extracted
slices. Out of these, we manually analyzed a sample of 320 video slices, ensuring a margin of error of ±5% with a
confidence level of 95%.

The estimation has been performed applying a sample size calculation formula for an unknown population [29]. The
goal of the manual validation was to assure that the splitting performed by HASTE actually resulted in the creation
of visually coherent slices, representing e.g., a specific game scene, an introductory countdown, etc. Each of the 320
manually analyzed slices has been independently inspected by two of the authors who classified them as “visually
coherent” or not. Conflicts, arisen for 13 slices (4%), have been solved through an open discussion. We report the
precision of the Video Slicer as the percentage of reported slices which have been classified as visually coherent. Such
an evaluation lacks an assessment of the recall ensured by the Video Slicer. In other words, we are not assessing whether
points in the video which should have resulted in new slices have been missed by HASTE. To partially address this
limitation, when manually inspecting the 320 slices we also verified whether each of them contained additional “valid
splitting points” that have been missed by HASTE. We also report this data when answering RQ1.

To answer RQ2, we trained and tested the Random Forest classifier on the dataset of 1,546 gameplay and 2,945
non-gameplay video slices previously described. We used the WEKA’s default configuration for the Random Forest
classifier, i.e., we set the number of trees to 100, the number of randomly chosen attributes to 0 and the maximum
depth of the trees to “unlimited”. We used a 10-fold cross validation to assess the performance of the trained model.
Since our dataset is slightly unbalanced (66% of the slices are non-gameplay), we also experimented with re-balancing
our training set in each of the 10-fold iterations using SMOTE [7], an oversampling method which creates synthetic
samples from the minor class. Since we did not observe major improvements (results in our replication package [2]), we
discuss in the paper the results without re-balancing. In particular, we report the confusion matrix output of the 10-fold
validation (and, thus, the true positives, true negatives, false positives, and false negatives) and the corresponding recall
and precision values for both the gameplay and the non-gameplay categories. We compare our approach with a very
simple baseline that reports all the video segments as gameplay videos.
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To address RQ3 we started by manually building an oracle reporting stuttering events in the 10 YouTube videos
composing the dataset for this RQ. The first author looked at the overall 2 hours of videos with the goal if identifying
stuttering events. The latter were documented by writing down the second in the video and the corresponding frame at
which the event started. The 44 candidate stuttering events identified have been further validated by a second author,
who confirmed 41 of them (7% of conflicts). An open discussion aimed at solving conflicts led to the final creation of
our oracle, composed by 42 stuttering events spread across the 10 videos as reported in Table 3. HASTE has then been
run on the 10 videos, collecting the 62 candidate stuttering events reported by it. Based on these, we compute its recall
and precision when considering the built oracle as the ground truth.

We also manually analyzed the reported stuttering events that were outside of the oracle (i.e., that we did not
identified by watching the video). Indeed, the perception of a stuttering event is quite subjective and subtle in some
cases (micro-stuttering). Thus, even instances not present in our oracle might be true positives. Also this analysis has
been performed independently by two authors, with conflicts arisen on 1 (1.61%) of the inspected instances. Such an
analysis allows to compute an overall precision for HASTE (i.e., how many of the stuttering events it reports are true
positives).

To better interpret the performance of HASTE, we compare it with two main baselines. The first, named SSIM

baseline, is basically the last step of HASTE (i.e., the Stuttering Detector) without all previous components in the pipeline.
This means that a stuttering event is identified if at least two pairs of subsequent frames have a SSIM ≥ 1 − 𝜖 (i.e.,
0.9999, in our case). Differently from the complete approach, the SSIM is computed (i) between all pairs of subsequent
frames in the video since the non-gameplay slices are not discarded by the Random Forest, and (ii) on the entire frame,
including external elements shown on screen but unrelated to the gameplay (e.g., the player), since cropping is not
applied. The SSIM baseline allows to assess the boost in performance provided to HASTE by all steps preceding the
similarity computation. The second baseline, Pixel-sim baseline, is the most simple and natural approach one could
devise to detect stuttering events. It computes a pixel-by-pixel similarity between subsequent frames in a video, and
it says that there is a stuttering event when an exact match between them is found. In addition to those two main
baselines, we also compare HASTE with a version of HASTE (HASTE NoFiltering) that does not rely on the Video Slice
Classifier component, i.e., which does not filter out non-gameplay. This would further allow to highlight the usefulness
of such a step.

We run the baselines on the same dataset of videos used for HASTE computing, also in this case, the precision
and recall with respect to the manually built oracle. The Pixel-sim baseline and HASTE NoFiltering reported a total of 95
and 213 candidate stuttering events, respectively. We manually classified all instances not matching the ones in the
oracle using the same procedure previously described for HASTE and computed the baseline precision. Since the SSIM
baseline reported a much higher number of stuttering events (388), we performed the same analysis, but on a statistically
significant sample (95%±5% confidence) of those not matching our oracle (186 manually analyzed instances).

5 RESULTS DISCUSSION

We discuss the achieved results by research question.

5.1 RQ1: Evaluation of Video Slicer.

Table 1 reports the accuracy of the Video Slicer component in identifying valid splitting points in the provided videos.
For each video, we report: (i) its ID, which can be mapped to our replication package [2]; (ii) its length; (iii) the number
of slices (i.e., frames in which the video should be split) identified by HASTE; (iv) the size of the sample we manually
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Table 1. RQ1: Accuracy of the Video Slicer

Video Length #Identified #Analyzed TP Precision #Missed

1 30:46 563 94 58 0.62 8
2 13:41 63 11 7 0.64 2
3 20:28 78 13 10 0.77 1
4 16:15 53 9 9 1.00 1
5 29:17 143 24 19 0.79 4
6 15:42 61 10 7 0.70 3
7 23:53 97 16 16 1.00 2
8 19:33 180 30 20 0.66 2
9 20:39 35 6 6 1.00 0
10 35:17 28 5 4 0.80 2
11 19:45 52 9 9 1.00 1
12 29:11 108 18 13 0.72 3
13 17:56 5 1 1 1.00 0
14 24:13 83 14 12 0.86 0
15 13:10 7 1 1 1.00 3
16 18:42 25 4 4 1.00 1
17 22:36 38 6 6 1.00 0
18 23:48 22 4 3 0.75 1
19 28:49 254 43 37 0.86 4
20 17:27 14 2 2 1.00 0

Overall 7:21:08 1,909 320 244 0.76 38

analyzed; (v) the true positive (TP) instances we identified in the analyzed sample (i.e., points in which the splitting was
valid); (vi) the corresponding precision, computed as the number of TPs divided by the size of the analyzed sample;
and (vii) the number of missed slices (i.e., additional splitting points we identified that were missed by HASTE). Worth
commenting is the number of slices identified by HASTE (1,909), an average of 95 per video. Such a number may
look surprisingly high. However, it is worth remembering that the goal of the Video Slicer is not to extract slices that
are meant to be visualized by humans, but to make sure that each slice embeds a set of frames having a very similar
graphical layout.

Indeed, this is crucial for the subsequent steps of HASTE. For example, computing the 𝐻𝑀 heatmap on a set of
frames visualizing completely different content would not make sense, since it would mean focusing on the top-10% of
changing pixels which, however, may represent different objects (e.g., in a frame, the game action, in another frame, an
advertisement). Thus, the slicing must cluster together similar subsequent frames into one slice, creating a new slice
when the pixels on screen substantially change. Based on our analysis, 76% of the identified splitting points are correct,
representing major changes of the content depicted on screen. One may argue what false positives are in this context.
In other words, how is it possible that an approach based on image similarity may identify wrong split points (i.e.,
subsequent frames that basically represent the same scene but that are perceived as different by HASTE and thus split).
This happens, for example, when a special effect is shown on screen for a few seconds (e.g., some smoke appears in the
game for a few frames), leading the color histogram similarity to low values between the last frame without the special
effect and the first frame showing it. While HASTE slices the video at this point, this is a wrong decision, since both
the frames before and after the special effect represent the exact same scene and, thus, could in theory share the same
heatmap.
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Fig. 5. Example of gradient effect resulting in the loss of a valid splitting point

Concerning the “#Missed Slices” column, in the 320 slices we manually inspected, we found 38 valid splitting points
missed by HASTE. These are mostly due to the application of a gradient effect when the video moves from one scene
(e.g., the player introducing the following video content) to another (e.g., the actual gameplay). The gradient effect
applied over a set of frames {𝐹1, 𝐹2, . . . , 𝐹𝑛} makes HASTE failing since there is no drastic change from a frame 𝐹𝑖 to a
frame 𝐹𝑖+1, with the image on screen slowly changing. However, such a process results in an overall drastic change
between 𝐹1 and 𝐹𝑛 , which is missed by HASTE. Fig. 5 shows a concrete example of the gradient effect resulting in the
loss of a valid splitting point.

The issue of missed slices, while minimal in our current dataset, poses a potential challenge for datasets with a
prevalent use of gradient transitions between scenes. his effect results in a gradual change that HASTE currently fails
to detect due to its reliance on identifying significant frame-to-frame changes. A possible basic solution is to extend the
comparison between frames, in addition to the immediately following frames, to a larger time window, which could
help identify the cumulative effect of gradual changes. By analyzing the difference between frames in a specific interval,
HASTE could detect significant transitions occurring after a series of smaller changes. Alternatively, a more expensive
method might include using machine learning techniques on a dataset that includes a significant number of gradient
transitions. A model could allow the recognition of gradual change patterns typical of gradient effects, enabling the
identification of cutoff points that would otherwise go undetected. In general, however, this remains as an open issue
that future work should address.

5.2 RQ2: Evaluation of Video Slice Classifier.

Table 2 reports the confusion matrix resulting from the classification performed by the Video Slice Classifier.
The rows report the gameplay (GP) and the non-gameplay (NGP) slices in the oracle, which have been classified by

HASTE as reported in the columns. For example, out of the 1,537 GP slices in the oracle (1,174 + 363), 1,174 have been
correctly identified by HASTE, while 363 have been misclassified as NGP. This results in a recall of 0.77 for the GP
slices. The precision for GP slices is 0.80, since HASTE wrongly classifies 296 NGP slices as GP. Thus, eight out of ten
slices identified as GP by HASTE are actual gameplay slices.

The precision and recall values are even better for the identification of NGP slices. While the latter are not at the
core of HASTE, the excellent results achieved demonstrate that the features used for training the Video Slice Classifier
are able to filter out slices that are irrelevant for the identification of stuttering events.

The Random Forest does also pair each prediction with a “confidence level”, a value between 0.50 and 1.00 that
indicates how confident the model is in the provided classification. Such a confidence level is computed as the number
of classification trees in the forest that “voted” for a specific output (e.g., gameplay). For example, an output prediction
⟨gameplay, 0.90⟩ indicates that the model is 90% confident about the gameplay classification. We studied how the
confidence of the classifications impacts their quality. In particular, we verified whether by setting a threshold on the
confidence of the classification it is possible to effectively exclude false positives (i.e., NGP classified as GP). Such a
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Table 2. RQ2: Automatic classification of video slices as gameplay (GP) and non-gameplay (NGP) by Video Slice Classifier and the
baseline.

Video Slice Classifier GP NGP Precision Recall

GP 1,174 363 0.80 0.77
NGP 296 2,657 0.90 0.88

Baseline GP NGP Precision Recall

GP 1,573 0 0.35 1.00
NGP 2,953 0 0.00 0.00

scenario could be interesting for developers who want to receive less “stuttering reports” from HASTE which, however,
are more likely to belong to actual gameplay slices. We found that by only considering classifications having a confidence
of at least 0.70 (other slices are just discarded as if they are NGP), the precision in the identification of GP slices raises
to 0.89 and it further increases to 0.98 by only considering classifications having a confidence of at least 0.90. This has a
price to pay in terms of recall which drops to 0.56 (for the 0.70 confidence) and 0.27 (0.90). Still, our analysis shows that
using a high threshold on the classification confidence can be a viable solution for developers interested in receiving
less, but more likely to be correct, recommendations.

The baseline naturally achieves a perfect recall of 1, which is higher than the one achieved by Video Slice Classifier
(0.77) on gameplay segments. However, it achieves a very low precision on such a class (0.35). The practical implication
of such low precision is an unacceptably high rate of false positives, which could undermine the usefulness of the
classifier in real-world applications.

5.3 RQ3: HASTE for Identifying Stuttering Events.

Table 3 compares HASTE and the two baselines in terms of recall and precision achieved with respect to the oracle, i.e.,
the set of 42 stuttering events we manually identified in the inspected ∼2 hours of videos. For each approach and video,
we provide the number of stuttering events identified (#Found), the number of true positives (i.e., correctly identified
events) and the corresponding recall and precision.

HASTE is able to correctly identify 30 stuttering events (0.71 recall), and nearly half of the reported stuttering events
are true positives accordingly to our oracle (0.48 precision). Therefore, even by considering all candidate stuttering
events not matching our oracle as “wrong”, HASTE works reasonably well, with one out of two reported stuttering
being correct. HASTE was not able to identify 12 stuttering events documented in our oracle. This happened mostly
due to imprecisions for the Random Forest classifier that wrongly labels some slices as non-gameplay, thus excluding
them from the stuttering analysis. For example, for the video with ID=3 we miss three out of the three stuttering events,
since they fall within slices classified as non-gameplay. An example of such a scenario is available in the video hosted at
https://youtu.be/ok9TV-lZyJk?t=56, with the slice starting at second 57 wrongly classified as non-gameplay by HASTE,
with the consequent miss of the stuttering documented in our oracle (second 63).

In relative terms, it can be noticed that HASTE performs significantly better than both baselines. The Pixel-sim
baseline, which simply checks whether consecutive frames are equal at pixel level, achieves the worst results in terms
of recall (0.29) accompanied by a low precision as well (13%). This shows that a trivial approach is largely insufficient
for the problem at hand. Several of the wrongly identified stuttering events belong to parts of the videos unrelated
to gameplay, such as those showing on screen the game settings which, by their nature, are quite static and tend to

15

https://youtu.be/ok9TV-lZyJk?t=56


1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

TOSEM, June 03–05, 2018, Woodstock, NY Emanuela Guglielmi, Gabriele Bavota, Rocco Oliveto, and Simone Scalabrino

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

Table 3. RQ3: Recall and precision in the identification of stuttering events we manually identified (oracle).

HASTE SSIM baseline Pixel-sim baseline

Video Length #Oracle #Found TP Recall Prec. #Found TP Recall Prec. #Found TP Recall Prec.

1 15:15 1 3 1 1.00 0.33 29 1 1.00 0.03 1 1 1.00 1.00
2 8:49 4 8 1 0.25 0.13 29 3 0.75 0.10 7 2 0.50 0.29
3 7:27 1 4 1 1.00 0.25 19 1 1.00 0.05 14 1 1.00 0.07
4 17:21 10 11 7 0.70 0.64 194 5 0.50 0.03 57 3 0.30 0.05
5 11:59 1 2 0 0.00 0.00 1 0 0.00 0.00 1 0 0.00 0.00
6 12:04 1 3 1 1.00 0.33 10 0 0.00 0.00 5 0 0.00 0.00
7 6:14 22 29 18 0.81 0.62 74 17 0.77 0.23 10 5 0.23 0.50
8 21:16 0 0 0 - - 25 0 - 0.00 0 0 - -
9 5:10 2 1 1 0.50 1.00 0 0 0.00 - 0 0 0.00 -
10 14:37 0 1 0 - 0.00 7 0 - 0.00 0 0 - -

2:00:12 42 62 30 0.71 0.48 388 27 0.64 0.07 95 12 0.29 0.13

feature equal pairs of subsequent frames. Also the SSIM baseline tends to recommend false positive stuttering events
in these cases, since it does not benefit from the exclusion of non-gameplay slices performed by the Random Forest.
The SSIM baseline has the worst precision (0.07), due to the additional tolerance it has compared to the other baseline.
Indeed, while the Pixel-sim baseline identifies a stuttering only if two subsequent frames are identical, the SSIM baseline

inherits the design decision of our approach, with the 0.9999 threshold.
Concerning the recall value (0.64), it may look surprising that SSIM baseline achieves a lower recall than HASTE.

Indeed, the additional steps behind our approach (in particular the Video Slicer and the Video Slice Classifier) are mostly
aimed at removing false positives, i.e., stuttering events detected when there is no gameplay on screen. The lower
recall is completely due to the mask employed in HASTE for cropping the 10% most frequently changing pixels in the
slice. The top part of Fig. 6 shows how HASTE “sees” two subsequent frames before computing their SSIM, which is
instead computed on the entire frames (shown in the bottom of Fig. 6) by the SSIM baseline. The cropped frames allow
HASTE to exclude the face of the player from the similarity computation, thus correctly identifying the stuttering, since
the core part of the game scene is identical between the two images. Instead, the baseline considers the changes in
“irrelevant” parts of the screen which make it missing the stuttering since the similarity falls below the set threshold.

It is worth noting that on the video with ID=2 both baselines achieved a higher recall as compared to HASTE. This is
due to the lack in this video of external elements on screen (e.g., the player), which makes all strategies adopted in
HASTE to exclude false positives useless, and just leading to the lost of valid stuttering events.

We further analyzed the stuttering events identified by the experimented approaches but not matching our oracle
(i.e., correct stuttering we missed while creating the oracle). This could happen especially in the case of micro-stuttering
events which are hard to spot for humans, but that might still be relevant for developers [43]. We show the results of
such an analysis in Table 4, in which we report, for each approach, (i) the number of events analyzed, (ii) the number of
true positives found that do not belong to the oracle (TP¬𝑂 ), and (iii) the computed precision. Remember that for the
SSIM baseline we analyzed a statistically significant sample (186 instances) of the 388 reported events, while we analyzed
all the events for HASTE and the Pixel-sim baseline. HASTE confirms its superiority, by achieving a 0.78 precision
compared to the 0.19 of the best-performing baseline. Overall, when considering both the true positives falling and
not falling within our oracle, 89% of the stuttering events detected by HASTE are actual stuttering or micro-stuttering
events. Only 7 out of 62 identified events are false positives.

Table 5 reports the results of the comparison between HASTE and HASTE NoFiltering . HASTE NoFiltering is able to
correctly identify a larger number of valid stuttering events as compared to HASTE (0.73 recall), but it is less precise
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Fig. 6. Comparison between HASTE and SSIM baseline: On top how HASTE “sees” two subsequent frames before computing their
SSIM; on the bottom the complete frame how seen by the baseline for the similarity computation

Table 4. RQ3: Precision in identifying micro-stuttering events not in the oracle. † means we analyzed a sample of events.

HASTE SSIM baseline Pixel-sim baseline

Video #Analyzed TP¬𝑂 Precision #Analyzed† TP¬𝑂 Precision #Analyzed† TP¬𝑂 Precision

1 2 1 0.50 14 0 0.00 0 0 -
2 7 6 0.85 13 4 0.31 5 3 0.60
3 3 2 0.67 9 1 0.11 13 4 0.31
4 4 3 0.75 98 10 0.10 54 4 0.09
5 2 1 0.50 1 0 0.00 1 0 0.00
6 2 1 0.50 5 2 0.40 5 1 0.25
7 11 10 0.91 30 19 0.63 5 1 0.25
8 0 0 - 13 0 0.00 0 0 -
9 0 0 - 0 0 0.00 0 0 -
10 1 1 1.00 3 0 0.00 0 0 -

32 25 0.78 186 36 0.19 ± 0.05 83 13 0.16

(0.15 precision). The higher recall can be explained with wrong classifications of segments as non-gameplay, which did
not allow HASTE to detect stuttering events in them. The lower precision, instead, shows that the actual non-gameplay
videos that HASTE NoFiltering contain consecutive identical frames that the last step of HASTE detects as stuttering
events. In summary, we can conclude that the Video Slice Classifier is fundamental to significantly reduce the number
of false positives.

We further analyzed the stuttering events identified by the experimented approaches but not matching our oracle
(i.e.,, correct stuttering we missed while creating the oracle). We show the results of such an analysis in Table 6, in
which we report, for each approach, (i) the number of events analyzed, (ii) the number of true positives that do not
belong to the oracle (TP¬𝑂 ), and (iii) the computed precision. Such an analysis confirms the superiority of HASTE,
which achieves 0.78 precision, compared to 0.15 obtained by HASTE NoFiltering .
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Table 5. Comparison between HASTE and HASTE NoFiltering in terms of recall and precision in the identification of stuttering events
we manually identified (oracle).

HASTE NoFiltering HASTE

Video Length #Oracle #Found TP Recall Prec. #Found TP Recall Prec.
1 15:15 1 7 1 1.00 0.14 3 1 1.00 0.33
2 8:49 4 19 2 0.50 0.11 8 1 0.25 0.13
3 7:27 1 7 1 1.00 0.14 4 1 1.00 0.25
4 17:21 10 135 7 0.70 0.05 11 7 0.70 0.64
5 11:59 1 2 0 - - 2 0 0.00 0.00
6 12:04 1 5 1 1.00 0.2 3 1 1.00 0.33
7 6:14 22 32 18 0.81 0.56 29 18 0.81 0.62
8 21:16 0 4 0 - - 0 0 - -
9 5:10 2 1 1 0.50 1.00 1 1 0.50 1.00
10 14:37 0 5 0 - - 1 0 - 0.00

2:00:12 42 213 31 0.73 0.15 62 30 0.71 0.48

Table 6. Comparison between HASTE and HASTE NoFiltering in terms of precision in identifying micro-stuttering events not in the
oracle.s

HASTE NoFiltering HASTE

Video #Analyzed TP¬𝑂 Precision #Analyzed TP¬𝑂 Precision

1 6 1 0.17 2 1 0.50
2 17 8 0.47 7 6 0.85
3 6 2 0.33 3 2 0.67
4 128 4 0.03 4 3 0.75
5 2 1 0.50 2 1 0.50
6 4 1 0.25 2 1 0.50
7 14 10 0.71 11 10 0.91
8 4 0 - 0 0 -
9 0 0 - 0 0 -
10 5 1 0.20 1 1 1.00

182 28 0.15 32 25 0.78

5.4 Generalizability of HASTE

To assess the generalizability of HASTE beyond the dataset we used for evaluating it, we run it on a generic gameplay
video in which we manually validated the presence of stuttering events even if was not declared in the video metadata. In
detail, we started by manually building an oracle reporting stuttering events on a gameplay video. To select the gameplay
video, we used Reddit to look for a video game and a specific area notoriously affected by stuttering. Specifically, we
selected a video regarding a driving session from the video game Grand Theft Auto V. Such a video was a normal
gameplay video for which no stuttering information was reported in the metadata (e.g., title or description). The first
author looked at the 18 minutes of the video with the goal of manually identifying stuttering events. As described in
the evaluation of RQ3 stuttering events were documented by noting the second in the video and the corresponding
frame at which the event began. We identified 7 stuttering events. We then ran HASTE on such a video. It reported 8
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candidate stuttering events. Based on these, we compute its recall and precision when considering the built oracle as
the ground truth. We obtanied 0.86 recall and 0.75 precision. We manually analyzed the reported stuttering events that
were outside of the oracle.

5.5 Discussion

In this section, we provide practitioners with suggestion on how they could use HASTE in practice.
Using Gameplay Videos from Twitch or YouTube. An interesting point to discuss regards the distinctions

between acquiring gameplay videos from the two dominant platforms used for hosting gameplay videos, i.e., YouTube
and Twitch. Twitch has become a leader in the live streaming sector, primarily because it was the pioneer in executing
the streaming model effectively. This early and successful focus on live streaming helped Twitch carve out a dominant
position in this particular niche. On the other hand, YouTube has always been at the forefront of video hosting services,
offering a platform where users can upload, share, and watch generic video-on-demand (VOD) content. In our study,
we used YouTube videos as the main resource to evaluate our third research question (RQ3) related to the identification
of stuttering events. This choice is based on YouTube’s extensive collection of curated shorter videos (between 5 and
20 minutes) showing stuttering events within games. These videos provide a focused lens to analyze and validate
stuttering events identified by HASTE. On the other hand, we use videos available on Twitch to evaluate our first
research question (RQ1) related to the evaluation of video slices, where we have the ability to analyze longer videos to
identify more potential scene changes within the video that may not occur in shorter videos. The extended duration of
streams on Twitch provides a larger dataset for initial analysis and refinement of our approach, ensuring that HASTE
can efficiently handle extended gameplay videos. On Twitch, during live streaming, streamers often pause gameplay to
offer commentary or advertising content. This variation of content within a single stream increases the complexity of
our analysis, allowing us to evaluate different elements within long-form video content. For this reason, we considered
both platforms in our evaluation. It is worth noting that HASTE is not limited to one of them and it can be used on
generic videos (from both platforms, or even others). The identification of stuttering events does not depend on the
video source on which the analysis is conducted, neither from a technological point-of-view (e.g., reliance on specific
APIs) nor from a methodological perspective (since the only information needed is the source video).

Replicating Problems and Debugging. HASTE is mainly intended to provide developers with video bug reports
from online platforms. This means that it has two key limitations. First, HASTE does not provide developers with
indications on how to replicate the problem observed in the videos. Replicating a bug could be particularly difficult
in video games since, in some cases, the input sequence that manifested the failure need to be provided with perfect
timing for a successful replication. Besides, even when timing is perfect, the inherent non-deterministic nature of some
video games might make it difficult to replicate some problems. There have been some attempts to tackle this problem
in the literature [13], but the research in this area is still in its infancy and future work should specifically aim at solving
this problem. A second limitation of HASTE is that it does not provide developers with feedback on how to debug
and fix those issues. Achieving this goal, however, is beyond the scope of HASTE, which is meant to simply highlight
problems, similarly to the several tools daily used by software developers such as linters or test cases.

Graphics Settings: Impact on Stuttering events in Video Games. The presence of stuttering events might be
more prevalent when the player chooses settings that provide a better graphic experience since the hardware is more
stressed in such a scenario. Nevertheless, stuttering events are never something expected from the players, above all
during gameplay. Since the hardware resources are sometimes insufficient to provide the best graphic experience with
the highest frame rate available, some video games allow the player to choose between high graphic quality with limited
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Table 7. Interview participants details.

Full Name Position Company Game Development Experience

Lorenzo Valente Lead Developer Tiny Bull Studios, Italy 7+ years
Jonathan Simeone Full Stack Developer Datasound, Italy 7+ years

FPS (e.g., 30) or lower graphic quality with higher FPS (e.g., 60 or 120). Still, such a trade-off should never result in the
manifestation of stuttering events (indeed, it is provided to avoid them). Stuttering events are clearly more problematic
when detected with the game’s default graphics settings, which might impact the highest number of players.

Effectively Using HASTE. Through the analysis of gameplay videos HASTE lacks access to hardware information,
making it challenging to definitively attribute the identified issues to software, hardware, or configuration-related
limitations (e.g., high quality settings on older hardware). Therefore, as any other tool, HASTE might provide false
positives. To address this problems, we suggest practitioners to prioritize stuttering events based on the frequency
they are reported by HASTE. If the same stuttering event is reported in several videos, it is likely that it is not just an
hardware-related or configuration-related problem, but rather a game-related one. On the other hand, isolated stuttering
events might indicate false positives (e.g., related to the hardware or the configuration used). Besides, practitioners
could use HASTE in combination with other testing tools, as also suggested by the developers we interviewed.

6 INDUSTRIAL APPLICABILITY OF HASTE

We evaluated the level of interest of game developers in HASTE by conducting semi-structured interviews. In this
section, we report the design and the results of such a study. Note that, differently from the survey we preliminarily
conducted to verify the relevance of the problem and of our methodology, in this case we aim at receiving feedback on
the specific approach we defined (HASTE).

6.1 Interviews Design

The goal of this additional analysis is to assess the practical applicability of HASTE in an industrial context. Specifically,
we want to assess whether game developers would consider exploiting HASTE in their testing activities to identify
stuttering events in video games. We conducted semi-structured interviews and involved two game developer (see
Table 7) to understand whether they perceive HASTE as a valuable asset that aligns with their needs and objectives in
identifying and addressing stuttering events within their game development process. We selected the two participants
using convenience sampling (both of them are former students at the University of Molise).

Before each interview, one of the authors explained the objective of the study and described how HASTE works. We
showed that the process starts by conducting a search on YouTube for a particular game of interest. In the second step,
HASTE can be executed on the given gameplay video to identify stuttering events in it. As a result, HASTE gives as
output a set of times in the video in which potential stuttering events occur.

Both interviews lasted about 30 minutes and were conducted by one of the authors, who recorded and transcribed
them for the following analyses. The interviews were based on a reflective strategy. In this waywe encourage participants
to share their experiences, thoughts and insights in a more introspective way. For example, by asking open-ended and
exploratory questions, we encourage participants to reflect on their experiences and provide detailed and nuanced
answers.
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Table 8. Interview questions.

Question Type of response

Stuttering Evaluation (repeated for three stuttering events)
Does the identified stuttering event actually result from a problem within the game? Yes/No
Please motivate your answers Open response
Does the provided information about the stuttering event offer enough details to replicate the issue? Yes/No
Please motivate your answers Open response

Overall Evaluation
Would you use this tool before the release of the game? Yes/No
Please motivate your answers Open response
Would you use this tool after the release of the game? Yes/No
Please motivate your answers Open response
Would you use HASTE in combination with other tools? Yes/No
How useful is HASTE overall for identifying potential stuttering events? 5-point Likert scale
Please motivate your answers Open response
Do you have suggestions on how HASTE could be improved? Open response

We preliminarily executed HASTE on one of the gameplay videos we used for our main evaluation of HASTE
randomly sampled from the ones we used and identified 3 stuttering events. In detail we use the gameplay video related
to the video game Fortnite. We asked the participants open the video on YouTube and we told them the time at which
HASTE detected each stuttering event (one at a time). We gave them the freedom to navigate the video directly on
YouTube to possibly get context regarding the event. After they analyzed each of them, we asked for feedback aimed at
understanding whether (i) the identified stuttering event is really an issue with the game and (ii) the information about
the stuttering event is sufficient to reproduce the problem (see the top part of Table 8).

After the evaluation of the three events, we asked questions aimed at getting feedback on the whole HASTE (see
the bottom part of Table 8). Specifically, we asked whether they would use this tool to identify stuttering events: (i) in
the testing phase before the game release, (ii) in the testing phase after the game release, and (iii) in combination with
other tools. Based on the last questions, participants were asked to indicate on a Likert scale from 1 to 5 (the higher the
better): the usefulness of HASTE in identifying potential stuttering events. Finally, they were asked to provide possible
suggestions on how HASTE could be improved. For all questions, participants were asked to motivate their answers.

6.2 Results

Identifying Stuttering Events. Both Lorenzo and Jonathan confirmed that the parts of the video we made them
watch (reported by HASTE) contained stuttering events. As for the first question, Lorenzo stated that while the one
observed is a stuttering event, it is difficult to determine from the video whether it is a problem due to the game or to
the hardware. On the other hand, Jonathan claimed that the observed events are due to a possible rendering problem of
the game. Specifically, he points out that, in one of them, stuttering occurs when the player turns the view and a larger
game scene with more details is displayed. Similarly, in another case, the player is entering inside a narrower passage:
Jonathan states it is very likely that the stuttering event is due to the game since often such parts are used to unload
game elements of the previous scene and load the ones that need to be rendered later, thus causing performance issues.
In detail he states, “Regardless of the video card or the hardware, even if it has high power, if the scene is heavy, there is

still a drop in fps although not quite as noticeable as it is on a less powerful video card. However, it remains an obvious

optimization problem”. In addition, he points out that “In some games where the graphics are particularly impressive, there

are also scenes that, despite all possible optimization, remain heavy as they are rich in detail. Optimizing those scenes would

mean having less details and thus risk losing player engagement”.
21
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Reproduction of Stuttering Events. Both Lorenzo and Jonathan reported that HASTE does not provide sufficient
information about the identified stuttering events to reproduce the conditions that caused of the issue. Again, Jonathan
states “Based on the observed stuttering events, probably due to a rendering problem, we have some information inherent

to what caused the stuttering and thus might allow us to reproduce the conditions that caused the problem. [...] However,

there are other aspects not known through the gameplay video that could affect the event”. For example, both point out
that some of the reported problems may be hardware-related. The devices on which the video game runs, or more
specifically, the video card used, may have a not negligible impact on the presence of possible stuttering events.

Practical Application of HASTE. In relation to the possibility of using this tool before the release of the game,
Lorenzo stated that, during beta-testing, he would rather rely on testers: “I would rely on their experience without

going through gameplay videos, gather information through game logs or direct screen recordings”. On the other hand,
Jonathan evinces in HASTE a support in beta-testing: “Maybe the tester can miss some stuttering event because they are

thinking about so many other things, and maybe they do not notice the micro lag. So it could be a useful tool to increase

the support testing”. In relation to the use of HASTE after the release of the game, both Lorenzo and Jonathan were
positive. In particular, they recognized the potential of the enormous amount of information now available through the
continuously evolving streaming platforms. Lorenzo states: “This tool could be used at scale, on a much larger pool of

streamers. By analyzing their gameplays, a game developer can get a lot of information. However, the actual causes of the

problem remain to be considered”. Again, Jonathan shows strong confidence: “Absolutely yes, the game continues to be

tested by end buyers and I continue to monitor it. This would allow me to find any problems that passed unnoticed in beta

testing”. Both participants would use HASTE in combination with other tools. In details, Lorenzo states: “Yes, I would use
it in combination with the tool provided in the engine we use in development. Specifically, I would use the engine tool first

and HASTE in the second phase”. Jonathan points out: “I would use it with any other tool that automatically allows me to

identify issues missed in testing. The strength comes based on the fact that gameplay videos are always on the rise because

the streamer’s profession is now emerging as a real profession. So this tool can be very useful for constant monitoring”.
Usefulness of HASTE tool. In terms of usefulness of HASTE in the identification of stuttering events, Lorenzo

gives a rating of 3 out of 5. He states “I am uncertain still about the same considerations expressed above about possible

problems due to hardware that could affect stuttering events. [...] However, it might be useful to get this information from

streamers”. In relation to the possibility of improvement HASTE, he suggests taking information from the logs generated
by games during gameplay: “If HASTE highlights video-side stuttering events and at the same time another tool notices an

abnormal sequence of error logs within the log file then there would be more certainty about what caused the stuttering

event”. In relation to the same aspect, Jonathan gives a rating of 5 out of 5: “The proposed events are actually stuttering

events. Regardless of what caused them, the tool identified them. Still, more in-depth analysis of these events may be needed”.
He also suggests that to improve HASTE it would be interesting to allow developers to give feedback on identified
stuttering events in order to recognize false positives. Therefore, a continuous learning model could be useful to improve
HASTE through feedback from those who use it.

Summing up. The two participants mostly provided positive feedback on HASTE, but emphasized its limitations.
One of them was worried about false positives, while the other one was more enthusiastic about the approach. While we
acknowledge that HASTE can provide (even several) false positives, we argue that this is not necessarily an impediment
for all developers. The same problem affects most static code analysis tools and still some developers want to used them
because they have other advantages (e.g., quick feedback). As the interviews point out, also HASTE has a clear advantage:
It is capable of exploiting the very large amount of information available online and reduce the effort of developers
interested in analyzing gameplay videos to find and fix performance issues. In addition, the interviews highlight a key
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point: The usefulness of HASTE strongly depends on its integration into the workflow of game developers. Despite
our very limited sample of developers involved, the interviewees reported that they would use HASTE at different
stages. Finally, the participants suggested to (i) implement a continuous learning system based on developer feedback to
improve the results and (ii) integrate it with information available from game logs, which however are harder to acquire
than gameplay videos and could be more easily available during beta-testing. Finally, the participants highlighted that
it may be difficult in some cases to understand whether an observed lag is due to a software (game) issue or to an
hardware one. While we agree, game developers may consider an identified stuttering event as relevant only if found in
several videos possibly from different streamers, thus increasing the chance that the observed issue is independent
from the hardware and is, thus, software-related.

7 THREATS TO VALIDITY

Construct validity. Those are mainly related to imprecisions made when building the oracles used in our evaluation
and, more in general, when manually inspecting the output of HASTE and of the baselines. The manual analyses always
involved at least two authors. As for the dataset used to assess the performance of the Video Slice Classifier, it has been
automatically built starting, however, from manually-classified videos assigned in YouTube to specific categories. Thus,
we are confident about the quality of the assigned gameplay/non-gameplay slices.

It is possible that the stuttering events identified in gameplay videos are not due to issues with the game itself but to
external factors, such as a heavy computation running on the player’s machine or suboptimal hardware configuration.
However, gameplay videos are usually recorded by professional players equipped with proper hardware and interested
in recording an enjoyable playing session.

Internal validity. We did not tune some of the HASTE’s parameters. For instance, we discarded video slices shorter
than 5 seconds, since we assumed that any sort of statistical feature we could compute on their frames (e.g., the median
of the 𝐻𝑀 heatmap distribution) would be unreliable. Similarly, we identify candidate stuttering only if at least two
subsequent pairs of frames exhibit a SSIM higher than the set threshold (0.9999). The latter is a possible parameter to
tune as well. Our decision of avoiding fine-tuning these parameters was driven by the high cost of manually validating
different variants of HASTE. However, the lack of parameters fine-tuning does not invalidate our findings, but makes
the reported performance a sort of lower-bound for what could be achieved by systematically adjusting the HASTE
parameters. To answer RQ1, we mostly relied on the labeling performed by the authors, who might have been biased
in the evaluation. To alleviate this threat, we involved two external validators to evaluate the 320 manually-analyzed
slices. Such validators were asked to see the labels we provided and classify them either as “correct” or “incorrect.” Both
the evaluators reported that all the instances had been correctly validated. This suggest that there was no significant
bias, thanks to the methodology we used to label the segments. We involved the same validators to re-assess the labels
we assigned to the segments to answer RQ3, which focused on the identification of stuttering events. Specifically, we
asked them to double-check the label we assigned to (i) the 42 stuttering events identified by the authors, and (ii) the
ones that HASTE or any baseline classified as stuttering event (343 events), totaling 385 evaluations. We used the same
methodology adopted for the check of RQ1. Again, the evaluators reported no disagreement with our evaluations.

We set the threshold for splitting the video in segments in the Video Slicer component of HASTE to 0.3. We chose
such a value because we wanted to find clear cut points. We analyzed the distribution of similarities between pairs of
consecutive frames in the videos we analyzed to answer RQ1. Fig. 7 reports the results of such an analysis. It is clear
that similarity values below 0.8 are always outliers for all the videos. This shows that varying the threshold in this
range would result in the inclusion/exclusion of relatively few data points (outliers).
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Fig. 7. Distribution of color histogram similarity values between pairs of consecutive frames.

We chose to set the threshold for the slicing at 5 seconds. It might be argued that different thresholds values might
allow to obtain better results. We conducted an analysis on the video segments discarded (lower than 5-seconds). In
detail, we examined the video segments of each gameplay analyzed in our study. We identified 75 segments shorter
than 5 seconds, of which 58 reported a duration of 0 seconds (less than 30 FPS detected). The cumulative duration of
the remaining 17 segments was 43 seconds from a total of about two hours of gameplay videos analyzed. Specifically,
two segments had a duration of 4 seconds (e.g.,, depicting a part of gameplay where the player accesses a game map),
while three segments had a duration of 3 seconds, and the remainder mostly lasted only one second. In addition, in 3
out of the 10 videos analyzed, no segments were deleted based on the 5-second threshold. We observed that these short
interruptions mostly occur when lighting significantly changes in the game. For example, these short segments often
correspond to bomb explosions, which light up the scene, switches to night mode via infrared, or brief accesses and
configurations of game maps. We chose not to combine these short video segments because our goal is to identify scene
changes to distinguish between gameplay and non-gameplay segments. Merging segments could increase the risk of
classification errors. Therefore, the 5-second threshold was determined as a pragmatic balance between excluding too
many short, potentially uninformative segments and maintaining the integrity of significant scene changes within our
analysis framework. On the other hand, the impact of the using a slightly larger threshold would have been irrelevant.
We analyzed how many segments are in the range between 5 and 10 seconds, and we observed that there are only 13
segments between 5 and 10 seconds.

We chose 3 as a minimum number of consecutive identical frames to trigger the detection of a stuttering event. This,
however, could be a sub-optimal choice. To evaluate how many consecutive identical frames are needed to identify

24



2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

Automatic Identification of Game Stuttering via Gameplay Videos Analysis TOSEM, June 03–05, 2018, Woodstock, NY

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056

Table 9. Identification of stuttering events with different numbers of identical consecutive frames.

2 frames 3 frames 4 frames

Evaluator 1 0 3 3
Evaluator 2 0 1 1
Evaluator 3 0 2 2

stuttering events, we conducted an evaluation with humans to understand to what extent they could detect stuttering
in different scenarios. We focused on an approximately one-minute gameplay video. We introduced stuttering events
by duplicating frames at three different points in the video, creating three potential stuttering scenarios to assess the
visibility and perceptibility of stuttering for users. These scenarios included (i) two consecutive identical frames, (ii)
three consecutive identical frames (the validation approach used in HASTE), and (iii) four consecutive identical frames.
We asked three external evaluators to watch the videos and mark the seconds in which they perceived stuttering events.
The results of this validation process revealed that none of the evaluators identified stuttering with only two duplicate
frames. However, in scenarios with three and four consecutive identical frames, the results varied. We report the details
of the results in Table 9.

These results suggest that duplication of two consecutive frames is probably not sufficient to be perceived as stuttering
by viewers, while duplication of three or more frames leads to consistent detection of stuttering, thus supporting our
heuristic choice in HASTE.

External validity. We initially aimed to include in our survey developers from around the world to get a more
comprehensive perspective. In the end, we decided not to do this because, in an initial version of the survey, we received
several responses from bots. To reduce the manual effort in discarding such responses, we decided to limit the survey
and get responses only from the United States and European countries. As a result, however, we might have missed
several participants, especially from countries with significant game development industries such as Canada and Japan.
To analyze the impact of their exclusion, we simulated a new run of the survey we conducted on Prolific with all the
filters we used in our survey, except for the nationality, that we set to Canada and Japan. Prolific warned that fewer
than 25 eligible participants would be available, and it did not report the exact number for privacy-related reasons.
Thus, we believe that our selection criteria did not significantly alter the results we would have achieved by including
such nationalities as well.

In our survey we could only involve 26 participants. It is possible that larger or different samples of practitioners
could have resulted in different conclusions. Nevertheless, when analyzing the open answer questions, we noticed
recurring themes and a lack of new themes (which might indicate that we reached saturation). For this reason, we
believe that, despite the limitations, the sample is sufficient for our purposes. Being the evaluation mostly based on
manual analysis (with the exception of RQ2), we limited our study to a total of 30 videos (20 for RQ1 and 10 for RQ3),
excluding the 75 used for RQ2. Still, this involved multiple authors manually analyzing over 10 hours of videos. Two
primary concerns revolve around the relatively small sample sizes in both the survey and structured interviews. In
the initial survey, only 26 participants were involved. However, it is imperative to underscore that this subset was
carefully selected from a broader population, but we focus only on participants connected with the world of video
game development. This strategic selection ensured that responses were not only more informative but also aligned
with the specific prerequisites outlined for our study. Similarly, the structured interviews were constrained to a mere
two participants. This limitation was attributed to the challenges in interfacing with video game developers actively
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engaged in their professional roles. Despite the small number, it’s crucial to acknowledge that these interviews involved
two senior developers. This allows us to give robust foundation to the insights gleaned, considering the experience and
expertise possessed by the interviewees.

8 RELATEDWORK

We discuss techniques proposed in the literature for quality assurance in video games through mining of gameplay
videos and playtesting. In literature there are several works relying on video analysis in software engineering in general
[4, 20, 26, 44].

In recent years, video screen recordings are becoming increasingly common for users to communicate problems to
developers because they effectively convey what the user sees [5, 9]. Similarly, the analysis of gameplay videos can play
a key role in game testing. Through the analysis of gameplay videos, developers can identify and document software
bugs that may not be easily detected by traditional testing methods. Video-based bug reports are becoming increasingly
popular for mobile applications [10, 17, 46]. Feng et al. [11] introduce CAPdroid, an automatic approach that use image
processing and convolutional deep learning models to segment bug recordings, infer user action attributes, and generate
subtitle descriptions. Krieter et al. [16] present a method for analyzing mobile application usage in detail by generating
log files based on mobile screen output.

Video games can face a multitude of challenges. TrueLove et al. [35] introduce a taxonomy to identify the reported
issues within these games. These challenges encompass aspects like game balance, including issues tied to the game’s
artificial intelligence (AI).

A strategy to support developers in finding quality issues in video games consists in analyzing gameplay videos
released by players. Since the phenomenon of publishing gameplay videos is relatively recent, only a few studies have
emphasized their value for identifying problems in video games.

Lewis et al. [18] were the first to realize the possible usefulness of analyzing gameplay video. They introduced a
taxonomy of video game bugs based on a collection of gameplay videos, when the phenomenon was not yet so spread.

Mnih et al. [21] used gameplay videos as input for a convolutional neural network to learn how to play Atari games.
More recently, Lin et al. [19] manually labeled 96 gameplay videos to train and test a Machine Learning-based

approach for automatically detecting gameplay videos that report functional bugs. Taesiri et al. [33] present a search
method that retrieves relevant video from large archives of gameplay videos related only on game physics problem. To
the best of our knowledge, HASTE is the first approach that automatically detects stuttering events from gameplay
videos.

Previous work defined approaches to support developers in testing video games, aiming at identifying functional and
nonfunctional unexpected behaviors before the release. Iftikhar et al. [15] proposed a model-based testing approach
for performing black-box testing of platform games. A crucial challenge of such approaches is that some issues might
only occur after executing a specific set of moves, which requires a certain level of intelligence. Therefore, Deep
Reinforcement Learning (RL) has been explored to provide competitive and intelligent “human-like” support. Pfau et al.

[24] introduced ICARUS, a framework for autonomous video game playing, testing, and bug reporting from which it is
possible to extract information about the problems identified (e.g., crash and stuck events).

Zheng et al. [48] present Wuji, an approach for automatically finding crash, stuck, logical, and balance problems by
using evolutionary algorithms, RL and multi-objective optimization.

Wu et al. [45] defined an approach based on RL to perform regression testing, while Ariyurek et al. [3] defined
synthetic and human-like agents, based on a combination of RL and Monte Carlo Tree Search (MCTS).
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Ahumada and Bergel [1] introduced an approach based on genetic algorithms to allow developers to reproduce
functional bugs by reconstructing the sequence of actions that lead to a specific faulty state of the game.

Guglielmi et al. [13] introduced GELID an automated approach to identify gameplay videos segments in which
streamers reported issues. Given a set of gameplay identify issues through subtitle and image analysis. In order to extract
relevant information from gameplay videos (i) identify video segments in which streamers experienced anomalies;
(ii) categorize them based on their type (e.g., logic or presentation); cluster them based on (iii) the context in which
appear (e.g., level or game area) and (iv) on the specific issue type (e.g.,, game crashes). In addition, TrueLove et al. [36]
based on the work just mentioned intoduce an automated approach based on machine learning to identify whether a
segment of a gameplay video contains occurrences of bugs. On the other hand, thier approach is designed to process
video segments regardless of the contents of the transcript text.

To the best of our knowledge, the only approach that aims at achieving a goal similar to HASTE is RELINE, defined
by Tufano et al. [37]. RELINE is the first technique to automatically detect game areas in which the frame-rate drops (i.e.,
areas that might trigger stuttering events). To do this, the authors trained a RL-based agent able to play a given game
with the aim of (i) achieving the best results in the game, like a player would do, and (ii) minimizing the frame-rate.
While RELINE is meant to be executed by developers before the release, HASTE supports them in beta-testing and after
the release, when gameplay videos from human players are available. Therefore, HASTE and RELINE play different
roles in testing video games and they are not interchangeable and the two techniques can be used together.

9 CONCLUSION AND FUTUREWORK

Stuttering is a relevant problem in video game development since it can significantly impact the gaming experience and,
thus, lead to poor perceived quality of the product. The identification of stuttering events is, however, quite challenging.
Indeed, the “search space” in which they could manifest is huge in modern video games.

We presented HASTE, an approach that allows video game developers to automatically detect stuttering events
documented in gameplay videos from Twitch and YouTube so that they can try to reproduce and fix them. We validated
the three main steps of HASTE on a total of 105 videos. As for the two preliminary steps, our results show that HASTE
(i) is able to accurately split videos in visually coherent slices, and (ii) is able to distinguish slices containing gameplay
from the ones with other contents (e.g., ads). When looking at HASTE as a whole, we found that it is able to achieve
significantly better results than the baselines, with an overall 71% recall and 89% precision.

The results of two interviews we conducted with expert video game developers to assess the applicability of HASTE
in an industrial context highlight its strengths in identifying potential stuttering events, leveraging the vast amount of
data available online. On the other hand, such interviews also highlight the limitations of HASTE: First, it might not
provide enough information to reproduce the issue, and second, it might report false positives (i.e., stuttering events not
due to the game but to other incidental problems). Both participants provide valuable insights on addressing current
limitations.

Future work will include both a broader evaluation of HASTE and experiments aimed at fine-tuning some of its
parameters. All code and data used in our study is publicly available in our replication package [2].
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